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Inverse Problem with the Covariance Operator

A major challenge in FDA is the inverse problem, which stems
from the inversion of the covariance operator.

- The covariance operator is compact, hence its inverse is not a
bounded operator, whence the complication.

We illustrate this through two examples where such an inverse
problem occurs.

(i) Functional canonical correlation analysis (FCCA)

(ii) Functional linear models.
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Functional Correlation

Let (X(t), Y (t)) be a pair of functional data.

How do we extend the concept of correlation to functional data?

The first attempt by Leurgans et al. (1993) is to extend the
canonical correlation for multivariate data to functional data.

For p-dimensional multivariate data (X,Y ), there are p canonical
correlations.
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Review of Multivariate Canonical Correlation

The first canonical correlation ρ1 is the maximal Pearson
correlation between any two linear directions 〈α,X〉 and 〈β, Y 〉,

=⇒ The first canonical correlation ρ1 and its associated weights
(α1, β1) are defined as follows:

ρ1 = sup
α,β∈Rp

cov(〈α,X〉, 〈β, Y 〉) = cov(〈α1, X〉, 〈β1, Y 〉),

subject to var(〈α,X〉) = 1 and var(〈β, Y 〉) = 1.
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Review of Multivariate Canonical Correlation

The k-th (k > 1) canonical correlation ρk and its associated
weights can be defined similarly as:

ρk = sup
α,β∈Rp

cov(〈α,X〉, 〈β, Y 〉) = cov(〈αk, X〉, 〈βk, Y 〉),

subject to var(〈α,X〉) = 1, var(〈β, Y 〉) = 1, and

(Uk, Vk) = (〈αk, X〉, 〈βk, Y 〉)

is uncorrelated to all previous pairs

(Uj , Vj) = (〈αj , X〉, 〈βj , Y 〉), for j = 1, . . . , k − 1.
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Definition of Functional Canonical Correlation

Replacing the inner product in Euclidean space with the L2-inner
product, 〈f, g〉 =

∫
I f(t)g(t)dt, we arrive at functional canonical

correlations with a series of functional canonical components

(ρk, αk, βk, Uk, Vk), k ≥ 1,

where Uk and Vk are maximally correlated and (Uk, Vk) are
uncorrelated across k.

It can be shown (as for multivariate data) that
functional canonical correlation analysis (FCCA) corresponds to

eigenanalysis of the operator R = Σ
−1/2
XX ΣXY Σ

−1/2
Y Y ,

where ΣXX and ΣY Y are the corresponding covariance operator
for X and Y respectively, and ΣXY is the cross-covariance
operator.
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Inverse Problem of FCCA

Existence of the canonical components is guaranteed if R is a
bounded operator.

-While this is feasible for multivariate data, the inverse of a
covariance operator is NEVER bounded because a covariance
operator is a compact operator.

- A remedy was provided in He, M. and W. (2003), which defined
a generalized inverse under strong conditions that requires the
eigenvalues decay fast to zero.
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More Problems with FCCA

Although it is possible to resolve the inverse problem by imposing
strong conditions, CCA often has an overfitting problem in that
the first canonical correlation tends to be very large and hard to
interpret.

- This overfitting problem already exists for multivariate data when
the dimension is relatively high (but still finite).

- It is caused by the large degree of freedoms in choosing the
p-dim canonical weights.
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More Problems with FCCA

This overfitting problem is magnified for functional data as
theoretically the d.f. is ∞ because the weight functions are
infinitely dimensional.

In practice, the weight functions are obtained on a dense grid but
it still involves a large d.f.

Another challenge with FCCA is the theory. The ill-posed nature of
FCCA triggers theoretical challenges.

- e.g.
√
n-rate of convergence is not feasible for estimates of the

canonical correlations ρk within the L2 paradigm.
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Cautionary Remarks with FCCA

For these reasons, FCCA must be used with caution.

Alternative functional correlations are called for.

One of them is the dynamic correlation (DC) proposed by Dubin
and M. (2005), which is a functional version of Pearson correlation.

DC avoids involving the entire covariance operator to overcome
both the inverse and overfitting problem intrinsic to FCCA.

- We may explore this in a later section with neuroimaging
applications, if time permits.
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End of FCCA

14/37



Outline

1 Introduction

2 Inverse Problem in Functional Correlations

3 Inverse Problem in Functional Regression

4 Next Generation Functional Data

15/37



Inverse Problem in Functional Regression

Intuitively, any regression method/model involves an inverse
problem, but not all inverse problems are ill-posed.

Any procedure that involves inverting a covariance operator is
ill-posed.

There are three scenarios for functional regressions:
(i) scalar (or vector) response with functional and possibly
additional vector covariates

(ii) Functional response with scalar covariates

(iii) Functional response with functional and possibly additional
vector covariates.
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Functional Linear Regression:

Scalar Response Y & Functional Covariate X(t)

How to construct a functional linear model?

Answer: Always think of the vector case first, then replace the
inner product !

Linear model: Y = β0 + 〈β1, X〉+ error.

Functional linear model: Y = β0 +
∫
I β1(t)X(t)dt+ error.

Is this an ill-pose problem?

YES! β1 = Σ−1XX cov (Y,X).
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Functional Linear Regression:

Functional Response Y(t) & p-dim Vector Covariate X

How to construct a functional linear model?

Answer: Replace the inner product in the vector (Y) case!

Multivariate Linear model: Y = β0 + β1X+ error.
- Here Y and β0 are q-dim vectors, but β1 is a q × p matrix.

Functional linear model: Y (t) = β0(t) + 〈β1(t), X〉+ b(t)+ error,
where β1(t) consists of p columns of functions and b(t) is a
random function. −→ “varying-coefficient” model.

Is this an ill-posed problem?

No! β1(t) = Σ−1XX cov (Y (t), X).
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Functional Linear Regression:

Functional Response & and Functional Covariate

How to construct a functional linear model?

Answer: Replace the inner product in

Multivariate Linear model : Y = β0 + 〈β1, X〉+ error,
where X and Y are vectors and β1 is a matrix.

Functional linear model:
Y (t) = β0(t) +

∫
IX
β1(s, t)X(s)ds+ b(t)+ error.

Is this an ill-posed problem?

YES! β1(t) = Σ−1XX cov (Y (t), X(t)).
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Functional Linear Regression when X(t) and Y (t) are

measured together

When X and Y are measured simultaneously, future values of X
should not be used to predict Y (t).
⇒ Y (t) = β0(t) +

∫ t
0 β1(s, t)X(s)ds+ b(t)+ error.

- This is called a “historical model” as only the history of X up to
time t is used to predict Y at time t.

- This model is ill-posed.

There is another functional linear model:

Y (t) = β0(t) + β1(t)X(t) + b(t) + error.

- This is a “concurrent” varying-coefficient model as only the
current value of X is associated with the current Y value at time t.

- This model is NOT ill-posed.

20/37



Functional Linear Regression when X(t) and Y (t) are

measured together

When X and Y are measured simultaneously, future values of X
should not be used to predict Y (t).
⇒ Y (t) = β0(t) +

∫ t
0 β1(s, t)X(s)ds+ b(t)+ error.

- This is called a “historical model” as only the history of X up to
time t is used to predict Y at time t.

- This model is ill-posed.

There is another functional linear model:

Y (t) = β0(t) + β1(t)X(t) + b(t) + error.

- This is a “concurrent” varying-coefficient model as only the
current value of X is associated with the current Y value at time t.

- This model is NOT ill-posed.

20/37



Functional Linear Regression when X(t) and Y (t) are

measured together

When X and Y are measured simultaneously, future values of X
should not be used to predict Y (t).
⇒ Y (t) = β0(t) +

∫ t
0 β1(s, t)X(s)ds+ b(t)+ error.

- This is called a “historical model” as only the history of X up to
time t is used to predict Y at time t.

- This model is ill-posed.

There is another functional linear model:

Y (t) = β0(t) + β1(t)X(t) + b(t) + error.

- This is a “concurrent” varying-coefficient model as only the
current value of X is associated with the current Y value at time t.

- This model is NOT ill-posed.

20/37



Functional Linear Regression when X(t) and Y (t) are

measured together

When X and Y are measured simultaneously, future values of X
should not be used to predict Y (t).
⇒ Y (t) = β0(t) +

∫ t
0 β1(s, t)X(s)ds+ b(t)+ error.

- This is called a “historical model” as only the history of X up to
time t is used to predict Y at time t.

- This model is ill-posed.

There is another functional linear model:

Y (t) = β0(t) + β1(t)X(t) + b(t) + error.

- This is a “concurrent” varying-coefficient model as only the
current value of X is associated with the current Y value at time t.

- This model is NOT ill-posed.

20/37



Comparison of Functional Linear Models vs

Linear Mixed-effects Model

Functional varying-coefficient model:
Y (t) = β0(t) + β1(t)X(t) + b(t) + error.

Historical Functional linear model:
Y (t) = β0 +

∫ t
0 β1(s, t)X(s)ds+ b(t) + error

Functional linear model using the entire X trajectory:
Y (t) = β0 +

∫
IX
β1(s, t)X(s)ds+ b(t) + error

- Note here that X and Y need not be measured at the same time
period.

Linear Mixed-effects Model: Y (t) = β0 + β1X(t) + bZ(t)+ error,

where the coefficient β1 is time-invariant, so is the random effect b.
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More about Functional Regression Models

All the aforementioned functional linear models can be extended to
functional generalized linear model by adding a known link
function and a prespecified variance function.

They can also be extended to an unknown link function, termed
“functional single index model”.

e.g. Y = β0 + g(
∫
I β1(t)X(t))+ error,

where g is an unknown function.
(X needs to be a continuous process)

Additional continuous time-dependent and time-independent
covariates Z can be added to the model (How?)
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More about Functional Regression Models

If some of these covariates are discrete, a partial linear single-index
model will be needed to model the discrete covariates linearly.

e.g. Y = β0 + θ1Z1 + g(θ2Z2 +
∫
I βq(t)X(t)dt)+ error.

The single-index can be extended to multiple indices etc.

e.g. Y = β0 + g(
∫
I β1(t)X(t)dt+

∫
I β2(t)X(t)dt) + error.

All these index based models are “dimension reduction” models.
Another type of dimension reduction model is the “additive
model”,
.e.g. Y (t) = β0(t) +

∑
φk(Xk) + b(t)+ error.
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Time-varying Additive Model:

Zhang and W. (2015, Biometrika)

The additive model, Y (t) = β0(t) +
∑
φk(Xk) + b(t)+ error ,

can be extended to allow for time-varying coefficients.

Y (t) = β0(t) +
∑
βk(t)φk(Xk) = b(t)+ error.

“Time-varying additive model”

There are lots of models that one can construct!

- More later by Hans.

- Review on functional regression by Morris (2015).
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End of Inverse Problem

- Just hang in there! -
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Next Generation FD

So far, the functional data are 1D independent curve data.

These curve data can be dependent

e.g. Functional time series and spatio-temporal data.

Functional data can be 2D, 3D images, or even 4D data.

Functional data can also include objects, shapes, trees, networks,
etc.
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2D Functional Data:

http://www.pnas.org/content/97/11/6150

/F1.expansion.html
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3D Functional Data:

http://www.musicianbrain.com/images/fmri.jpg
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What is the Dimension of fMRI data?

For a single subject:

Spatially (3D) correlated temporal (1D) data

Temporally correlated 3D data

→ Atom of Longitudinal 3D functional data

For multi subjects:

Independent Sample of 4D functional data

multi-level data if there are multiple scans
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FDA for Neuroimaging Data

Neuroimaging data is intrinsically functional, often multifaceted.

Neuroimaging data is a gold mine for FDA.

The most prevailing FDA method for NDA has been Functional
PCA.

Other functional approaches are emerging daily!
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Summary of Next Generation Functional Data

Correlated functional data

e.g. functional time series, spatio-temporal data

Independent k-D data

Correlated k-D data

Longitudinal functional data

Multi-level functional data

...... any others?
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Next Generation Functional Data

Object data

e.g. shapes, trees, networks, etc.

All seems complex - Some non-Euclidean!

Many are BIG!

e.g. Neuroimaging data

They are challenging, but represent opportunities!
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End of Next Generation Functional Data
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List of Review Papers

A review paper (W. Chiou and M., 2016, Annual Review of
Statistics and Its Application)

Another review paper on functional regression by Morris (2015,
Annual Review of Statistics and Its Application)

Additional review papers:
Müller (2005, Scan J. Stat.) - regression and classification

Müller (2008, Handbook on LDA, ed. Davidian, Verbeke and
Molenberghs) - functional modeling for LD

Müller (2011, International Encyclopedia of Stat. Science) - FDA
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List of Books on Functional Data

Ramsay and Silverman (2005)

Ferraty and Vieu (2006)

Wu and Zhang (2006)

Horváth and Kokoska (2012)

Hsing and Eubank (2015)
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End of Part III: Thanks You!
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