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What is Functional Data?

Functional Data: A sample of random functions,
with one function per subject.

- These functions can be curves (1D), images (2D or 3D), or
higher dimension object data.

Characteristics of functional data:

(i) The atom of functional data is a “function”.
(ii) They are ∞−dimensional data.
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Example: Curve Data

Curve data

- real-valued functions defined on an interval I ∈ R.

- one curve per subject

These curves are usually considered realizations of a stochastic
process X(t) in a Hilbert space, e.g.

L2(I) or RKHS (reproducing kernel Hilbert space).
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Examples of Functional Data

fMRI data at a particular voxel for 20 subjects =⇒ n = 20.
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Examples of Functional Data

Spectrum data for meat content - here the function is over the
spectrum channels of n pieces of meat.
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Additional Examples of Functional Data

10 minutes EKG recordings of 100 patients.
n = 100

Daily temperature recording in January at 240 locations.
n = 240

Daily reproduction (# of eggs) of 1000 female medflies
(Mediterranean fruit flies) till death.
n = 1000
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Real/Observed Functional Data

In reality, functional data are recorded intensely on a time grid
=⇒ high-dimensional data.

* The fMRI data were recorded every two seconds for about 10
minutes (300 time points) =⇒ 300 dimensional data.
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Real/Observed Functional Data

The spectrum data were recorded at 100 frequency channels
(hence 100-dim) and smoothed individually, i.e. pre-smoothed.

850 900 950 1000 1050
2

2.5

3

3.5

4

4.5

5

5.5

Spectrum Channel

Ab
so

rba
nc

e

10/79



Longitudinal Data as Functional Data

Longitudinal Data - Irregularly sampled functional data.

They are often only a few measurements per subject,
as in medical follow-up or social studies.
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Longitudinal AIDS Data

CD4 counts of 369 patients.

ni = # of repeated measurements for subject i,

varies with subject.

- An average of 6.44 measurement per subject.

This results in longitudinal data with uneven # of measurements
at irregular time-points.
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CD4 Counts of First 25 Patients
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Longitudinal vs Functional data

Because of the intense recording, functional data have been
customarily modeled with a nonparametric approach.

- Often smoothness of the functions is assumed.

Longitudinal data have traditionally been modeled by a parametric
approach, such as a linear mixed-effects model.

- However, it may not be easy to spot the pattern due to sparsity
of and noise in the longitudinal data.
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Longitudinal vs Functional data

This motivates a data oriented nonparametric approach,
which luckily is feasible under mild design conditions.
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Longitudinal vs Functional data

The analysis of functional data is termed “Functional Data
Analysis” (FDA) by Ramsay (1982).

Both longitudinal and functional data may be observed with noise
(measurement errors).

=⇒ the observed data for subject i might be

Yij = Xi(tij) + eij , j = 1, . . . , ni,

where Xi(t) is a smooth random function,
eij are independent ∀ i, j.

A strength of the FDA approach is its ability to handle noise.
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Summary

There are the three types of functional data:

(i) stochastic processes =⇒ ∞-dimensional data
(ii) intense/dense functional data =⇒ high dimensional data
(iii) sparse functional/longitudinal data =⇒ irregular dim. data.

The stochastic process Xi(t) is assumed to be a continuous
function.
(But the observed data may contain noise, a.k.a. measurement
error.)

Nonparametric approaches are typically employed to all three types
of functional data.
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Questions

What are the pros and cons for each type of functional data?

- Which one is the easiest or hardest to handle?
(We’ll discuss how to handle them in the next section.)

Answer: More is better!

How did we get away with the curse of high dimensionality?

Answer: We borrow information by smoothing!

- We can do so because we have a natural ordering of the data.

- Chen, Chen, M. and W. (2011) proposed a way to reorder
multivariate data and convert high-dim data to functional data.
(Stay tuned!)
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History of FDA

The term “functional data” was coined by Ramsey (1982) but the
term “curve data” was often used as well, e.g. by Gasser et al.
(1984) for growth curves.

The first implementation of functional principal component
analysis (FPCA) were attributed to Rao (1958), where the growth
data were recorded as multivariate data.

The analysis of stochastic processes went even further back to
Grenander (1950), Karhunen (1946), Loève (1946), and later
include Kleffe (1973) and Dauxois and Poussé (1976).
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History of FDA

The handling of longitudinal data as sparse functional data was the
focus in Yao et al. (2005), but nonparametric approaches for
longitudinal data had already been employed by Shi et al. (1996),
Staniswalis and Lee (1998), James et al. (2000), and Rice and Wu
(2001).

First generation functional data typically consist of a random
sample, X1(t), . . . , Xn(t), of independent real-valued functions.

Next generation functional data refer to functional data that are
part of complex data objects,
possibly multivariate, correlated, or involve images and shapes.

Brain and neuroimaging data are examples of next generation
functional data.

20/79



History of FDA

The handling of longitudinal data as sparse functional data was the
focus in Yao et al. (2005), but nonparametric approaches for
longitudinal data had already been employed by Shi et al. (1996),
Staniswalis and Lee (1998), James et al. (2000), and Rice and Wu
(2001).

First generation functional data typically consist of a random
sample, X1(t), . . . , Xn(t), of independent real-valued functions.

Next generation functional data refer to functional data that are
part of complex data objects,
possibly multivariate, correlated, or involve images and shapes.

Brain and neuroimaging data are examples of next generation
functional data.

20/79



History of FDA

The handling of longitudinal data as sparse functional data was the
focus in Yao et al. (2005), but nonparametric approaches for
longitudinal data had already been employed by Shi et al. (1996),
Staniswalis and Lee (1998), James et al. (2000), and Rice and Wu
(2001).

First generation functional data typically consist of a random
sample, X1(t), . . . , Xn(t), of independent real-valued functions.

Next generation functional data refer to functional data that are
part of complex data objects,
possibly multivariate, correlated, or involve images and shapes.

Brain and neuroimaging data are examples of next generation
functional data.

20/79



History of FDA

The handling of longitudinal data as sparse functional data was the
focus in Yao et al. (2005), but nonparametric approaches for
longitudinal data had already been employed by Shi et al. (1996),
Staniswalis and Lee (1998), James et al. (2000), and Rice and Wu
(2001).

First generation functional data typically consist of a random
sample, X1(t), . . . , Xn(t), of independent real-valued functions.

Next generation functional data refer to functional data that are
part of complex data objects,
possibly multivariate, correlated, or involve images and shapes.

Brain and neuroimaging data are examples of next generation
functional data.

20/79



Questions

What is the difference between functional and time-series data?

What is the benefit of functional data over multivariate data?

Is there a curse of dimensionality for dense functional data?

- How did we get away with the curse?

What are the three types of functional data?

- What does “dense” or “sparse” mean?

- We address this in Section 3, Zhang and W. (2016)

Review of FDA W., Chiou and Müller (2016)
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End of Introduction
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Mean and Covariance Function

Data {X1, . . . , Xn} are i.i.d. copies of a random function X(t):

Mean function: µ(t) = E(X(t))

Covariance function: Σ(s, t) = cov(X(s), X(t)),
where s & t ∈ interval I.

Regular functional data - All subjects are measured at the same
time grid, t1, . . . , tm, often equally spaced =⇒ multivariate data.

Irregular functional data - The measurement schedule for subject i
is ti1, . . . , tini =⇒ longitudinal data.
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Estimation of Mean and Covariance Functions:

Dense and Regular Functional Data

For regular or fully observed functional data, the cross-sectional
(sample) mean at the observed time t can be used to estimate the
mean function.

- Such a mean estimate provides a
√
n-consistent (pointwise)

estimate of the mean µ(t) even in the presence of measurement
errors. (WHY?)

The cross-section mean can further be smoothed slightly to obtain
a smooth mean estimate (This requires a dense/intense
measurement schedule).

- Think how you should smooth to retain the
√
n-consistent

of the smooth estimate .
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Estimation of Mean and Covariance Functions:

Dense and Regular Functional Data

Likewise, the sample covariance matrix is also
√
n-consistent and

can be slightly smoothed to retain the
√
n-rate of consistency.
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Estimation of Mean and Covariance Functions:

Irregular Functional Data

The cross-sectional approaches no longer work for irregular data.

- Smoothing is needed to estimate the mean function.

- The mean estimate could be
√
n-consistent (pointwise) for

“dense” functional data but will have nonparametric rates
otherwise.
(“Dense” functional data ⇐⇒

√
n-rate of convergence is feasible.)

Likewise, 2D smoothing is needed to estimate the covariance
function. and

√
n-consistency can be achieved for dense

functional data.

27/79



Estimation of Mean and Covariance Functions:

Irregular Functional Data

The cross-sectional approaches no longer work for irregular data.

- Smoothing is needed to estimate the mean function.

- The mean estimate could be
√
n-consistent (pointwise) for

“dense” functional data but will have nonparametric rates
otherwise.
(“Dense” functional data ⇐⇒

√
n-rate of convergence is feasible.)

Likewise, 2D smoothing is needed to estimate the covariance
function. and

√
n-consistency can be achieved for dense

functional data.

27/79



Estimation of Mean and Covariance Functions:

Irregular Functional Data

The cross-sectional approaches no longer work for irregular data.

- Smoothing is needed to estimate the mean function.

- The mean estimate could be
√
n-consistent (pointwise) for

“dense” functional data but will have nonparametric rates
otherwise.
(“Dense” functional data ⇐⇒

√
n-rate of convergence is feasible.)

Likewise, 2D smoothing is needed to estimate the covariance
function. and

√
n-consistency can be achieved for dense

functional data.

27/79



Estimation of Mean and Covariance Functions:

Irregular Functional Data

The cross-sectional approaches no longer work for irregular data.

- Smoothing is needed to estimate the mean function.

- The mean estimate could be
√
n-consistent (pointwise) for

“dense” functional data but will have nonparametric rates
otherwise.
(“Dense” functional data ⇐⇒

√
n-rate of convergence is feasible.)

Likewise, 2D smoothing is needed to estimate the covariance
function. and

√
n-consistency can be achieved for dense

functional data.

27/79



CD4 Counts of First 25 Patients
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CD4 Counts of first 25 Patients
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Mean Curve: CD4 Counts of first 25 Patients
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Mean Curve: CD4 counts of all patients
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Estimation of Mean Function

If we employ the local linear smoother, the estimate for the mean
function is:

µ̂(t) =β̂0, where

(β̂0, β̂1) =argmin
β0,β1

n∑
i=1

ni∑
j=1

[
Yij − β0 − β1(Tij − t)

]2

Khµ(Tij − t).
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Remarks

In addition to the local linear (or polynomial) smoother, any
smoothing method, such as penalized splines, B-splines, Wavelets,
and Fourier filtering, can be employed.

These smoothing methods (scatter plot smoothers) can also be
applied to dense data, whether regular or not, so a unified
approach is feasible.

Another common approach for dense data is to pre-smooth the
data from each subject separately, then take the cross-section
mean at each time point t.
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Remarks

This is the case for the spectrum data.
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Remarks

Such a pre-smoothing typically aims at:

(i) getting rid of the noise in the data,
(ii) revealing the latent smooth curve for each subject.

Hall, M. W. (2006) and Zhang and Chen (2007).

However, both depend on the amount of smoothing and design of
the dense data, so whether the mission has been accomplished is
unclear.

Because of this uncertainty and because pre-smoothing alters the
data, we prefer not to adopt a pre-smoothing approach.

35/79



Remarks

Such a pre-smoothing typically aims at:

(i) getting rid of the noise in the data,
(ii) revealing the latent smooth curve for each subject.

Hall, M. W. (2006) and Zhang and Chen (2007).

However, both depend on the amount of smoothing and design of
the dense data, so whether the mission has been accomplished is
unclear.

Because of this uncertainty and because pre-smoothing alters the
data, we prefer not to adopt a pre-smoothing approach.

35/79



End of Estimation of Mean Function
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Estimation of Covariance Function

Our target is Σ(s, t) = cov(X(s), X(t)), but we do not observe X.

Observe Yij = Yi(tij) = Xij + eij , where var(eij) = σ2(tij).

=⇒ cov(Y (s), Y (t)) = cov(X(s), X(t)), when s 6= t,

var(Y (t)) = cov(Y (t), Y (t)) = cov(X(t), X(t)) + σ2(t).

This means we need to handle the diagonal part of cov(Y ), which
corresponds to the variance of Y , differently from the rest of
cov(Y ).
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Covariance Surface of X(t)
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Covariance of Y (t)
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Raw Covariance Plot: Diagonal Data in Black

[Y (tij)− µ̂(tij)][Y (tik)− µ̂(tik)], ∀ i, j, k
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Raw Covariance with Diagonal Data Removed

[Y (tij)− µ̂(tij)][Y (tik)− µ̂(tik)], ∀ i, j 6= k
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2D Smoother to Estimate the Covariance of X(t)
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Raw Covariance with Diagonal Data Removed

[Y (tij)− µ̂(tij)][Y (tik)− µ̂(tik)], ∀ i, j 6= k
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Design Plot for Covariance: (tij, tik), ∀ i, j 6= k
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Design Plot for One Subject: (tij, tik),∀j, k
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Design Plot for Two Subjects: (tij, tik),∀j, k
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Design Plot for All Subjects: (tij, tik), ∀ i, j, k
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Estimated Covariance Surface of X(t)

Let Dijl = (Yij − µ̂(tij))(Yil − µ̂(til)), be the raw covariances.

Employing a local linear smoother, the estimate for Σ(s, t) is:

Σ̂(s, t) = β̂0, where

(β̂0, β̂1, β̂2) = argmin
β0,β1,β2

n∑
i=1

∑
1≤j 6=l≤ni

[
Dijl − β0

−β1(tij − s)− β2(til − t)
]2

KhΣ
(tij − s)KhΣ

(til − t).
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Raw Variance Plot:[Y (tij)− µ(tij)]2, ∀ i, j
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Estimated Variance function of Y (t)
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Estimated Covariance & Variance of Y (t)
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Estimates of σ2(t): Variance of Measurement Errors

σ2(t) = var(Y (t))− var(X(t)).

When σ2(t) = σ2 for all t, one can estimate σ2 by
∫
I σ̂

2(t)dt.

Due to boundary effects, PACE replaces I by a sub-interval.
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PACE (Matlab) Package for FDA:

http://www.stat.ucdavis.edu/PACE/
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fdapace: R-package of PACE

An R-package, fdapace, is now available in CRAN.

- But it only contains a few core functions in PACE.

fdapace is still under construction - Feedback welcome!
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End of Covariance Estimation
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Outline

1 Introduction

2 Mean and Covariance Estimation

3 Theory: Mean and Covariance Estimation
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Theory: Mean and Covariance Estimation

(Zhang and W., 2016)

So far, we have used “scatter plot smoothers” to estimate the
mean and covariance functions.

- This is the method of PACE (a Matlab package for functional
data), first proposed in Yao, Müller and W. (2005).
(An R package, fdapace, has been released recently.)

- It works for any type of sampling plan: regular, dense, or not.

- It assigns the same weight to each observation, so a subject with
more measurements (large ni) receives a larger total weight.

Another way to assign weights is to give equal weights, 1
n , to all

subjects as proposed in Li and Hsing (2010).
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Theory: Mean and Covariance Estimation

(Zhang and W., 2016)

Which weight assignment is better?

In Zhang and W. (2016) we present asymptotic properties of these
estimators and define what “dense” functional data means.

A referee requested that we develop a general theory using a
general weight function, which covers both weighing schemes.

As a result, an optimal weighing scheme based on convex
combinations of the two weights was developed.
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Estimation of Mean Function

Equal weight per observation (Yao, Müller and W., 2005)

µ̂obs(t) =β̂0 where

(β̂0, β̂1) =argmin
β0,β1

n∑
i=1

ni∑
j=1

[
Yij − β0 − β1(Tij − t)

]2

Khµ(Tij − t).

Equal weight per subject (Li and Hsing, 2010)

µ̂sub(t) =β̂0 where

(β̂0, β̂1) =argmin
β0,β1

n∑
i=1

1

ni

ni∑
j=1

[
Yij − β0 − β1(Tij − t)

]2

Khµ(Tij − t).
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Estimation of Mean Function

A general weighing scheme (Zhang and W,, 2016),

- weight wi for subject i, where
∑n

i=1 niwi = 1.

µ̂obs(t) =β̂0 where

(β̂0, β̂1) =argmin
β0,β1

n∑
i=1

wi

ni∑
j=1

[
Yij − β0 − β1(Tij − t)

]2

Khµ(Tij − t).

The OBS scheme uses wi = 1∑n
i=1 ni

⇒ the same for all subjects.

The SUBJ scheme uses wi = 1
nni

.
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Important notation

n = Sample size, ni = # observations of subject i.

OBS: arithmetic mean of ni and of n2
i ,

N̄ =
1

n

n∑
i=1

ni, N̄S2 =
1

n

n∑
i=1

n2
i .

SUB: harmonic mean of ni,

N̄H =
n∑n
i=1

1
ni

,
N̄S2

(N̄)2
→ 1.
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Asymptotic Normality

OBS:

[Γobs(t)]
−1/2{µ̂obs(t)− µ(t)− 1

2
h2
µσ

2
Kµ

(2)(t)︸ ︷︷ ︸
asymptotic bias

} d−→ N (0, 1), where

Γobs(t)︸ ︷︷ ︸
asymptotic variance

= ‖K‖2 Σ(t, t) + σ2

nN̄hµf(t)
+

(N̄S2 − N̄)

n(N̄)2
Σ(t, t).

SUB

[Γsub(t)]
−1/2{µ̂sub(t)− µ(t)− 1

2
h2
µσ

2
Kµ

(2)(t)︸ ︷︷ ︸
asymptotic bias

} d−→ N (0, 1), where

Γsub(t)︸ ︷︷ ︸
asymptotic variance

= ‖K‖2 Σ(t, t) + σ2

nN̄Hhµf(t)
+

1

n

(
1− 1

N̄H

)
Σ(t, t)
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Rates of Convergence

1 Non-dense: Slower than
√
n-rate.

Sparse data = finite ni, is a special case.

2 Dense:
√
n-rate, with asymptotic bias

(between non- and parametric paradigm)

3 Ultra-dense:
√
n-rate, no asymptotic bias

(Parametric paradigm)
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Partition of Functional Data: OBS

Assume lim supn(N̄S2)/(N̄)2 <∞.

1 Non-Dense data: When N̄/n1/4 → 0 and hµ � (nN̄)−1/5,

√
nN̄hµ [µ̂obs(t)− µ(t)−

1

2
h2
µσ

2
Kµ

(2)(t)]
d−→ N

(
0, ‖K‖2

Σ(t, t) + σ2

f(t)

)
.

2 Dense data: When N̄/n1/4 → C and hµ/n
−1/4 → C1 where

0 < C,C1 <∞ ,√
n

(N̄)2

N̄S2
[µ̂obs(t)− µ(t)−

1

2
h2
µσ

2
Kµ

(2)(t)]
d−→ N

(
0, ‖K‖2

Σ(t, t) + σ2

f(t) · C1
+ Σ(t, t)

)
.

3 Ultra-Dense data: When N̄/n1/4 →∞, hµ = o(n−1/4), and
hµN̄ →∞,

√
n

(N̄)2

N̄S2
[µ̂obs(t)− µ(t)]

d−→ N (0,Σ(t, t)) .
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Partition of Functional Data: SUB

1 Non-Dense data: When N̄H/n
1/4 → 0 and hµ � (nN̄H)−1/5,√

nN̄Hhµ [µ̂sub(t)− µ(t)− 1

2
h2
µσ

2
Kµ

(2)(t)]
d−→ N

(
0, ‖K‖2 Σ(t, t) + σ2

f(t)

)
.

2 Dense data: When N̄H/n
1/4 → C and hµ/n

−1/4 → C1 where
0 < C,C1 <∞ ,

√
n [µ̂sub(t)− µ(t)− 1

2
h2
µσ

2
Kµ

(2)(t)]
d−→ N

(
0, ‖K‖2 Σ(t, t) + σ2

f(t)C · C1
+ Σ(t, t)

)
.

3 Ultra-Dense data: When N̄H/n
1/4 →∞ , hµ = o(n−1/4), and hµN̄H →∞,

√
n [µ̂sub(t)− µ(t)]

d−→ N (0,Σ(t, t)) .

- This shows µ̂sub(t) is asymptotically equivalent to the sample mean
when the true curves Xi(t) can be observed without any measurement
errors.
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Comparison of Two Schemes

1 Asymptotic bias: both = 1
2h

2
µσ

2
Kµ

(2)(t).

2 Asymptotic variance:

Non-dense data: var(µ̂obs) ≤ var(µ̂sub), so OBS is more efficient.

Ultra-dense data: var(µ̂obs) ≥ var(µ̂sub), so SUB is more efficient.
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L2 Convergence

Equal weight per observation:

‖µ̂obs − µ‖2 = Op

(
h2
µ +

√(
N̄S2

(N̄)2
+

1

N̄hµ

)
1

n

)
.

Equal weight per subject:

‖µ̂sub − µ‖2 = Op

(
h2
µ +

√(
1 +

1

N̄Hhµ

)
1

n

)
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Uniform Convergence

Equal weight per observation:

sup
t∈[0,1]

∣∣µ̂obs(t)− µ(t)
∣∣ = O

(
h2
µ +

√(
N̄S2

(N̄)2
+

1

N̄hµ

)
log(n)

n

)
a.s.

Equal weight per subject:

sup
t∈[0,1]

∣∣µ̂sub(t)− µ(t)
∣∣ = O

(
h2
µ +

√(
1 +

1

N̄Hhµ

)
log(n)

n

)
a.s.
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Optimal Weighing Scheme

Optimal weights for a convex combination of the two estimators
exists.

wi = α
1

nN̄
+ (1− α)

1

nNi

Optimal weights:

α∗ =
cn2

cn1 + cn2
,

where cn1 and cn2 are respectively the asymptotic variance of
µ̂obj and µ̂sub.
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Optimal Weighing Scheme

Let µ̂α∗ be the estimate with the optimal weights,
wi = α∗ 1

nN̄
+ (1− α∗) 1

nNi
.

⇒ ‖µ̂α∗ − µ‖2 = Op

(
h2
µ +

√
cn1cn2
cn1+cn2

)
.

Since cn1cn2
cn1+cn2

≤ min{cn1, cn2}, the rate for µ̂α∗ is always at least
as good as those for µ̂obj and µ̂sub.

Simulation results in Zhang and W. (2016) show superior
performance of µ̂α∗ .
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End of Theory for Mean Function
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Covariance Estimate with General Weights

Let Dijl = (Yij − µ̂(Tij))(Yil − µ̂(Til)) be the raw covariance
based on a mean estimate µ̂.

Let vi be the weight attached to each observation for the ith
subject with

∑n
i=1 ni(ni − 1)vi = 1.

A general covariance estimator based on the weights vi is:
Σ̂(s, t) = β̂0, where

(β̂0, β̂1, β̂2) = argmin
β0,β1,β2

n∑
i=1

vi

∑
1≤j 6=l≤ni

[
Dijl − β0

−β1(Tij − s)− β2(Til − t)
]2

KhΣ
(Tij − s)KhΣ

(Til − t)
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Covariance Estimators: Two Special Cases

1 Dijl = (Yij − µ̂obs(Tij))(Yil − µ̂obs(Til)) and vi = 1∑n
i=1 ni(ni−1)

=⇒ OBS scheme.

2 Dijl = (Yij − µ̂sub(Tij))(Yil − µ̂sub(Til)) and vi = 1/(ni(ni − 1))
=⇒ SUB scheme.
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Asymptotic Normality

Let

V1(s, t) = Var[(Y1 − µ(T1))(Y2 − µ(T2)) | T1 = s, T2 = t];

V2(s, t) = Cov ([Y1 − µ(T1)][Y2 − µ(T2)], [Y1 − µ(T1)][Y3 − µ(T3)] | T1 = s, T2 = t, T3 = t) ;

V3(s, t) = Cov ([Y1 − µ(T1)][Y2 − µ(T2)], [Y3 − µ(T3)][Y4 − µ(T4)] | T1 = s, T2 = t, T3 = s, T4 = t) .

Γ−1/2
γ

[
γ̂(s, t)− γ(s, t)− 1

2
h2
γσ

2
K

(
∂2γ

∂s2
(s, t) +

∂2γ

∂t2
(s, t)

)
+ op(h

2
γ)

]
d−→ N (0, 1),

where

Γγ = [1 + I(s = t)]

[∑n
i=1 ni(ni − 1)v2

i

h2
γ

‖K‖4 V1(s, t)

f(s)f(t)
+

∑n
i=1 ni(ni − 1)(ni − 2)v2

i

hγ
‖K‖2

×f(s)V2(t, s) + f(t)V2(s, t)

f(s)f(t)

]
+

[
n∑
i=1

ni(ni − 1)(ni − 2)(ni − 3)v2
i

]
V3(s, t),

and I(·) is the indicator function.
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Summary for Covariance Estimation

Unified asymptotic normality for general weight functions:

1 Three partitions: non-dense, dense, and ultra-dense.

2 Two special weighing schemes:
Σ̂obs more efficient for non-dense data;
Σ̂sub more efficient for ultra-dense data.

3 Discontinuity of the asymptotic variance of the covariance
estimates:

Asymptotic variance expressions are different between s = t and
s 6= t.
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Discontinuity of the Asymptotic Variance

Technical Explanation:

E[Kh(T − t)Kh(T − s)] = 0, for s 6= t when h→ 0 for K on an
interval;

E[Kh(T − t)Kh(T − s)] = ‖K‖2f(t)/h+ o(1/h), for s = t.

- Intuitive explanation?
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End of Asymptotic Theory
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References for Mean and Covariance Estimation

Yao Mueller and W. (2005, JASA)

Li and Hsing (2010, AoS)

Zhang and W. (2016, Ann. Stat.)

Additional References:

Stainiswalis and Lee (1998, JASA),
Yao (2005, J. Mult. Analy.),
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End of Part I
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