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Lectures on FDA – Part IV

FUNCTIONAL REGRESSION



FUNCTIONAL REGRESSION MODELS

X 7→ Y

Rd R Multiple Regression, GLM
Rd1 Rd2 Multivariate Regression
L2 R “Functional Predictor Models”
Rd L2 “Functional Response Models”
L2 L2 “Function to Function Regression”



MODELING FUNCTIONAL PREDICTORS

1. Functional Linear Regression

Idea: Extending the multivariate linear regression model
E (Y |X ) = BX to functional data (X (t),Y ) or (X (t),Y (t)):

E (Y |X ) = µY +

∫
(X (s)− µX (s))β(s) ds,

the functional linear regression model with regression parameter
function β and scalar responses (Grenander 1950) (also generalized
version by including link function (GFLM));

E (Y (t)|X ) = µY (t) +

∫
(X (s)− µX (s))β(s, t) ds,

model with functional responses (Ramsay & Dalzell 1991)



2. Functional Nonparametric Regression

E (Y |X ) = µY + g(X )

for “smooth” function g , in analogy to nonparametric regression
(Ferraty & Vieu 2006)

Problem: Curse of dimensionality, as predictor is
infinite-dimensional. The infinite-dimensional curse can be
quantified by using results on small ball probabilities for stochastic
processes (Hall, M, Yao 2009).

⇒ Require functional regression models that fall between these
extremes



PRINCIPAL COMPONENT REPRESENTATION
OF FUNCTIONAL LINEAR REGRESSION

With predictor representations

X (s) = µX (s) +
∞∑
k=1

Akφk(s)

obtain from normal equations for the functional linear model (FLM)
E (Y |X ) = µY +

∫
β(s)(X (s)− µX (s))ds:

β(s) =
∞∑
k=1

E (AkY )

E (A2
k)

φk(s) =
∞∑
k=1

βkφk(s),

implying
E (Y |X ) =

∑
k

βkAk



FLM FOR FUNCTIONAL
PREDICTORS AND RESPONSES

Extending the multivariate linear regression model E (Y |X ) = BX
to functional data (X (t),Y (t)):

E (Y (t)|X ) = µ(t) +

∫
(X (s)− µX (s))β(s, t) ds.

Estimation of the parameter function β(·, ·) is an inverse problem.



• Idea: Extending the least squares normal equation
cov(X ,Y ) = cov(X )B.

• “Functional Normal Equation” (He et al. 2000,2003)
For auto-covariance operator AG of predictors X and

rXY (s, t) = cov [X (s),Y (t)] : rXY = AGβ.

• Since AG is a compact operator in L2, equation is not
invertible. Require functional generalized inverse: Well-defined
under regularity conditions and obtained by regularization –
truncation of included components or penalty (Cai & Hall
2006, Hall & Horwitz 2007).



Solution of the functional normal equation:

β∗(s, t) =
K∑

j ,k=1

cov(Aj ,Bk)

var(Aj)
φj(s)ψk(t).

Requires truncation with K = K (n)→∞ as n→∞

Existence of solution in image space of AG .



REPRESENTATIONS OF FLR

With predictor and response representations

X (s) = µX (s) +
∞∑
k=1

Akφk(s), Y (t) = µY (t) +
∞∑

m=1

Bmψm(t)

obtain from normal equations for the model
E (Y (t)|X ) = µY (t) +

∫
β(s, t)(X (s)− µX (s))ds

the representation

β(s, t) =
∞∑

m=1

∞∑
k=1

E (AkBm)

E (A2
k)

φk(s)ψm(t) =
∞∑

m=1

∞∑
k=1

βmkφk(s)ψm(t)

which implies E (Bm|X ) =
∑
βmkAk and (as Ak are uncorrelated)

E (Bm|Ak) = E [E (Bm|A1,A2, . . .)|Ak ] = E [E (Bm|X )|Ak ] = βmkAk .



• Other basis representations (wavelets, B-splines) have been
considered, eigen-representation has advantages due to
uncorrelatedness of scores (independence in Gaussian case)
and (relative) sparseness of representation but the
eigen-representation is not connected to the response.

• For densely sampled functional data, use estimated FPC scores
Âk , B̂m for β̂mk = ĉov(Âk , B̂m)/λ̂k , ie, decompose functional
regression into a series of simple linear regressions through the
origin.

• Inference: Separately sample predictor and response data for
randomly resampled subjects under H0 : no regression relation,
then recalculate functional regression and obtain bootstrap
distribution of suitable test statistics such as functional R2.



DROSOPHILA LIFE CYCLE GENE EXPRESSION

Consider gene time course data, where gene expression is
repeatedly measured for:

• 23 “muscle specific” genes: tissue-specific, muscle development
• 22 “skeleto-neural” genes

Müller & Chiou 2007 CSDA Müller, Chiou, Leng 2008 BMC
Bioinformatics
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Observed trajectories and estimated mean function for muscle-specific genes for predictor profiles X

(corresponding to gene expression profiles in embryo phase, left panel) and for response profiles Y

(profiles for pupa-adult phase, right panel)
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First two estimated eigenfunctions for temporal gene expression trajectories for the muscle-specific genes

in embryo phase (predictors X , left panel) and pupa-adult phase (responses Y , right panel).
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Scatterplots of functional principal component scores Bk of response trajectories versus Aj of predictor

trajectories, for j, k = 1, 2, for muscle-specific genes
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FUNCTIONAL COEFFICIENT OF DETERMINATION
AND DIAGNOSTICS

Extension from the multiple linear regression case:

R2 =

∫
T var(E [Y (t)|X ])dt∫
T var(Y (t))dt

=
∞∑
j=1

∑∞
k=1 R

2
kjτk∑∞

k=1 τk
,

where

R2
kj =

[cov(Aj ,Bk)]2

λjτk

are the coefficients of determination for the simple linear
regressions of Bk on Aj . Obtain estimate R2 = 0.85 for
muscle-specific genes (p = 0.0010 from bootstrap test)
Functional diagnostics can be obtained by a similar weighting
scheme: Functional hat matrix, functional Cook’s distance, etc.
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Observed trajectories and estimated mean function for cytoskeleton/neural genes in embryo phase (for

predictor X , left panel) and pupa phase (for response Y , right panel), respectively. Trajectories of gene

CG2198 are dashed.
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Cook’s distances (right panel) for the functional regression of cytoskeleton/neural genes.



FUNCTIONAL LINEAR MODEL
FOR LONGITUDINAL DATA

Regress processes Y (·) on processes X (·) under sparse data
situation. Notation:
Xi (s) on [0,S] : smooth predictor curve

Uil : measurements of Xi (·) at Sil , 1 ≤ i ≤ n, 1 ≤ l ≤ Li

Yi (t) on [0, T ] : smooth response curve

Vij : measurements of Yi (·) at Tij , 1 ≤ j ≤ Ni



Functional Regression Model

E [Y (t)|X (·)] = µY (t) +

∫ S
0
β(s, t)(X (s)− µX (s))ds.

β(s, t) : smooth regression function,
∫ T
0

∫ S
0 β2(s, t)dsdt <∞.

Modelling Predictor and Response Curves:

Uil = Xi (Sil) + eil = µX (Sil) +
∞∑

m=1

Aimφm(Sil) + eil ,

Vij = Yi (Tij) + εij = µY (Tij) +
∞∑
k=1

Bikψk(Tij) + εij .



BASIS REPRESENTATION

β(s, t) =
∞∑

k,m=1

E [AmBk ]

E [A2
m]

φm(s)ψk(t)

Estimating E [AmBk ]:

Ê [AmBk ] =

∫ T
0

∫ S
0
φ̂m(s)Γ̂XY (s, t)ψ̂k(t)dsdt,

where Γ̂XY (s, t) is local linear smoothing estimate of the covariance
surface ΓXY (s, t) = cov(X (s),Y (t)).



CONDITIONAL METHOD

Objective: Predict trajectory Y ∗ of a new subject, given
observations U∗ = (U∗1 , · · · ,U∗L∗)T of X ∗(·).

E [Y ∗(t)|X ∗(·)] = µY (t) +

∫ S
0
β(s, t)X ∗(s)ds

= µY (t) +
∞∑

k,m=1

E [AmBk ]

E [A2
m]

A∗mψk(t)

Constraint: µY (t) =
∫ S
0 β(s, t)µX (s)ds.



APPLICATION

Functional Regression of Systolic Blood Pressure on Body Mass
Index

Data: Body mass index (BMI) and systolic blood pressure (SBP)
for 812 participants in the Baltimore Longitudinal Study on Aging

Irregular and Sparse Measurements
R2 = 0.13
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Observed paths of Body Mass Index (left) and Systolic Blood Pressure (right) for 812 participants.
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Observed data (circles), predicted trajectories (black), 95% pointwise (blue) and simultaneous (red)

bands obtained by one-leave-out analysis.



GENERALIZED FUNCTIONAL LINEAR MODEL

• Predictors X (t) ∈ L2, Response Y ∈ R

• Components: Parameter Function β(·), Link Function g(·),
Variance Function σ2(·)

ηi = α +

∫
β(t)Xi (t) d(t) linear predictors

Yi = g(ηi ) + ei = µi + ei , i = 1, . . . , n,

with i.i.d. errors ei , means E (Yi ) = µi = g(ηi ) and
E (e|X (·)) = 0, var(e|X (·)) = σ2(µ).



• If link function g(·) and variance function σ2(·) are unknown
and smooth, they can be estimated from the data.

• Applications of generalized functional linear model (GFLM):
Functional logistic regression and classification, when Y
denotes class membership and the logistic link function is used.

• With orthonormal basis φj , j ≥ 1,

X (t) =
∞∑
j=1

Ajφj(t), β(t) =
∞∑
j=1

βjφj(t),

∫
β(t)X (t) dt =

∞∑
j=1

βjAj .

• Under regularity conditions, can obtain asymptotic consistency
of β and of E (Y |X ) – this is an active area of research



FURTHER EXTENSIONS OF THE FLM
“Classic” extensions: linear ⇒ quadratic ⇒ polynomial

The polynomial functional regression model (Yao & M 2010)

E (Y |X ) = α +

∫
T
β(t)X c(t)dt +

∫
T 2
γ(s, t)X c(s)X c(t)dsdt

+

∫
T 3
γ3(t1, t2, t3)X c(t1)X c(t2)X c(t3)dt1dt2dt3 + . . .

+

∫
T p

γp(t1, . . . , tp)X c(t1) . . .X c(tp)dt1 . . . dtp,

with α as intercept and β, γ, γj , 3 ≤ j ≤ p, as linear, quadratic
and jth order regression parameter functions. In terms of FPCs,

E (Y |X ) = α +
∑
j1≥1

βj1Aj1 +
∑
j1≤j2

γj1j2Aj1Aj2 +
∑

j1≤j2≤j3

γj1j2j3Aj1Aj2Aj3

+ . . . +
∑

j1≤...≤jp

γj1...jpAj1 . . .Ajp ,

model includes all interaction effects up to p time points.



FUNCTIONAL QUADRATIC REGRESSION

E (Y |X ) = α +
∞∑
k=1

βkAk +
∞∑
k=1

k∑
`=1

γk`AkA`,

Quadratic diagonal case

E (Y |X ) = α +
∑
k

βkAk +
∑
k

γkkA
2
k .

With eigenvalues λk for X and covariance functions

C1(t) = cov{X (t),Y } =
∞∑
k=1

ηkφk(t),

C2(s, t) = E{X (s)X (t)Y } =
∞∑

k,`=1

ρk`φk(s)φk(t),

least squares estimators are obtained via the representations
α = µY −

∑
k γkkλk , βk = ηk/λk , γk` = ρk`/(λkλ`),

for k < `, γkk = (ρkk − µYλk)/(E (A4
k)− λ2

k).



• Can easily be implemented with PACE (quadreg)

• Obtain consistent estimates and rates of convergence for
parameter functions α̂− α = Op(αn), ‖β̂ − β‖ = Op(βn),
‖γ̂ − γ‖ = Op(γn) and for predicting new responses under
either one of two assumptions:

• Gaussian assumption on predictor processes X : Convergence
rates for sparse irregular designs

• Densely observed functional predictors with noise; Gaussian
assumption not needed for convergence rates

• Note: The proofs for the two designs are quite different.



Predictor Functions: Tecator Spectral Data
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for subset of 50 meat specimen



Functional Linear Regression
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Residuals for Functional Linear Regression
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Functional Quadratic Regression
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Residuals for Functional Quadratic Regression

0 5 10 15 20 25 30 35 40 45 50 55
−5

−4

−3

−2

−1

0

1

2

3

4

5

Fitted

R
es

id
ua

l



−10
0

10

−1−0.500.51
45

50

55

60

65

70

75

80

85

1st FPC2nd FPC

F
it
te

d
 s

u
rf

a
c
e

−10

0

10

−0.5
0

0.5
30

40

50

60

70

80

90

1st FPC3rd FPC

F
it
te

d
 s

u
rf

a
c
e

−10 −5 0 5 10

−0.2
0

0.2
40

50

60

70

80

90

1st FPC4rd FPC

F
it
te

d
 s

u
rf

a
c
e

−1

0

1

−0.5
0

0.5
40

45

50

55

60

65

70

75

80

85

2nd FPC3rd FPC

F
it
te

d
 s

u
rf

a
c
e

−1

0

1

−0.2
−0.1

0
0.1

0.2
50

55

60

65

70

75

80

85

90

2nd FPC4th FPC

F
it
te

d
 s

u
rf

a
c
e

−0.5
0

0.5

−0.2−0.100.10.2
30

40

50

60

70

80

90

100

3rd FPC4th FPC

F
it
te

d
 s

u
rf

a
c
e

Sections through the fitted model E (Y |A1,A2,A3,A4).



AN ADDITIVE EXTENSION OF THE
FUNCTIONAL LINEAR MODEL (FLM)

The least squares parameter function in the FLM
E (Y |X ) = µY +

∫
β(s)(X (s)− µX (s))ds

has the representation
β(s) =

∑
m

∑
k βkφk(s) with βk = E (AkY )/E (A2

k),
yielding

E (Y |X ) =
∑
k

βkAk .

This motivates the following extension:
Functional Additive Model

E (Y |X ) =
∑
k

fk(Ak),

where fk are smooth nonparametric functions; analogously for
functional responses.



FUNCTIONAL ADDITIVE MODEL (FAM)
Assuming independent predictor scores Aj (automatically implied in
the Gaussian case) we find

E (Y |Ak) = E{E (Y |X )|Ak} = E{
∞∑
j=1

fj(Aj)|Ak} = fk(Ak).

Consequence: Functional Additive Model can be implemented
simply by 1-d scatterplot smoothing of Y vs Âik to obtain the
defining functions fk .

No backfitting iteration is needed: Fast and straightforward
implementation with PACE. Analogously for functional regression
model with scalar responses. For situations with several predictor
functions within subjects: Can apply common additive model to
ensemble of selected FPCs for all predictor functions.



ASYMPTOTICS FOR FAM

Employing PACE, one may show under regularity conditions that f̂k
is consistent for fk and the prediction Ê (Y |X ∗) is consistent for
E (Y |X ∗) (M & Yao 2008)

Key steps for proof:

• Differences between Aik and Âik are asymptotically small
enough to be negligible for the FAM smoothing steps.

• Perturbation analysis for linear operators, bounding the
difference between operators AG and AĜ .

• In the dense design case, obtain essentially 1-d rates of
convergence for the component functions f̂k .



ADDITIVE EXTENSION OF THE
FUNCTIONAL RESPONSE MODEL

Consider FLM with functional responses, with FPC representation
Y (t) = µY (t) +

∑
m Bmψm(t).

Then the least squares parameter function in the FLM
E (Y (t)|X ) = µY (t) +

∫
β(s, t)(X (s)− µX (s))ds

has the representation
β(s, t) =

∑
m

∑
k βkmφk(s)ψm(t) with βkm = E (AkBm)/E (A2

k)
yielding

E (Y (t)|X ) =
∑
m

∑
k

βmkAkψm(t).

This motivates the following extension:
Functional Additive Model

E (Y (t)|X ) =
∑
m

∑
k

fkm(Ak)ψm(t),

where fkm are smooth nonparametric functions.



FAM FOR FUNCTIONAL RESPONSES
Assuming independent predictor scores Aj (automatically implied in
the Gaussian case) we find

E (Bm|Ak) = E{E (Bm|X )|Ak} = E{
∞∑
j=1

fjm(Aj)|Ak} = fkm(Ak).

Consequence: Functional Additive Model can be implemented
simply by 1-d scatterplot smoothing of B̂im vs Âik to obtain the
defining functions fkm.

No backfitting iteration is needed: Fast and straightforward
implementation with PACE. Analogously for functional regression
model with scalar responses. For situations with several predictor
functions within subjects: Can apply common additive model to
ensemble of selected FPCs for all predictor functions.
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Gene time course data, zygotic genes for Drosophila for embryo
phase (left) and pupa phase (right).
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Table: Functional R2, 25th, 50th and 75th percentiles and mean of the
cross-validated observed relative prediction errors, RPE(−i),f , comparing
FAM and functional linear regression models for zygotic data.

25th 50th 75th Mean R2

FAM .0506 .0776 .1662 .1301 0.19
LIN .0479 .0891 .1727 .1374 0.16
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ASYMPTOTICS FOR FAM

Employing PACE, one may show under regularity conditions that
f̂km is consistent for fkm and the prediction Ê (Y (t)|X ∗) is
consistent for E (Y (t)|X ∗) (M & Yao 2008)

Key steps for proof:
• Differences between Bim and B̂im and Aik and Âik are
asymptotically small enough to be negligible for the FAM
smoothing steps.

• Perturbation analysis for linear operators, bounding the
difference between operators AG and AĜ .

• In the dense design case, one may obtain essentially 1-d rates
of convergence for the component functions f̂km.



Continuous Additive Model

• FAM is additive in the functional principal components Ak ,
can be characterized as frequency-additive

• Is it possible to construct a time-additive functional regression
model?

• Difficulty: Time domain is uncountable



• Solution is continuous additive model, which adds smoothness:
and considers the limit of a sequence of additive regression
models for increasingly dense time grids with additive
regression functions fj(·) = g(tj , ·) with E{g(tj ,X (tj)} = 0.

• This leads to
E{Y | X (t1), . . . ,X (tm)} = EY + 1

m

∑m
j=1 g{tj ,X (tj)}

with limit
E (Y | X ) = EY +

∫
g{t,X (t)} dt

(M, Yao, Wu 2013, Mc Lean et al 2014)

• For smooth transformations ζ of X (t), this model includes
E (Y | X ) = EY +

∫
β(t)[ζ{X (t)} − Eζ{X (t)}] dt.



Scalar Quantile Regression
with Functional Predictors

• Functional Regression Quantiles, extending Koenker’s linear
regression quantile approach to functional predictors (Cardot
2005)

• Nonparametric regression quantile approach: Extend the mean
regression approach to a conditional distribution target. With
binary link function g ,

P(Y ≤ y |X ) = E (I (Y ≤ y)|X ) = g−1(α(t)+

∫
X c(t)β(y , t)dt)

• Then take inverse of the conditional distribution to obtain
conditional quantile function (Chen & M, 2012)



Functional Conditional Regression

• Can the extension of mean regression to target conditional
distributions be extended to the case of functional responses?

• Difficulty: Distributions for stochastic processes hard to specify

• But there is one case where this works: Gaussian processes



Illustrative Example: Traffic Data



Velocity on I-880
X = currently available velocity profile along a stretch of highway,
Y = future velocity profile at drive-through, which will determine
actual travel time
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Prediction for Response Functions

• Y and X are both functions

• FPCfam: E (Y (t)|X ) = µY (t) +
∑∞

k=1
∑∞

j=1 fjk(Ak)ψj(t)

• FPCpredBands (Chen and M 2012): Global prediction bands for
Y conditional on X

• For Gaussian process: E (Y |X ) and cov(Y |X )

• Common principal component assumption
Additive assumption

cov(Y (t1),Y (t2) | X )

= GYY (t1, t2) +
∞∑
j=1

[
∞∑
k=1

gjk(Ak)−
( ∞∑
k=1

fjk(Ak)
)2

]ψj(t1)ψj(t2)



Modeling the Prediction Bands

• Global prediction bands for Gaussian case:

P(µ(t)− DX (t) ≤ YX (t) ≤ µ(t) + DX (t) | X ) ≥ 1− α

where DX (t) = Cα {var(Y (t)|X )}1/2

• For more general random processes:

E {P(LX (t) ≤ YX (t) ≤ UX (t) | X )} ≥ 1− α

• Find Cα by empirical coverage on test sets



‘Mobile Century’ Data

• Joint UC Berkeley - Nokia project (Herrera et al., 2010)

• Students were hired to drive on a segment of highway I-880
and send data (time, location, and speed) back through GPS
enabled mobile phones.

• The follow-up project ‘Mobile Millennium’ is generating more
data.



Estimated 90% Prediction Regions

0 50 100 150 200 250 300

−80
−60
−40
−20

0
20

0 50 100 150 200 250 300

−80
−60
−40
−20

0
20

0 50 100 150 200 250 300

−80
−60
−40
−20

0
20

R
el

at
iv

e 
S

pe
ed

 (
m

ph
)

0 50 100 150 200 250 300

−80
−60
−40
−20

0
20

0 50 100 150 200 250 300

−80
−60
−40
−20

0
20

Time (sec)
0 50 100 150 200 250 300

−80
−60
−40
−20

0
20

Time (sec)



Lectures on FDA – Part V

Derivatives



FUNCTIONAL GRADIENTS

For functional linear regression with scalar responses:
Derivative of an operator Ψ : L2 → R at x =

∑
k Axkφk is a linear

operator Ψ
(1)
x : For functions u and scalars δ,

Ψ(x + δu) = Ψ(x) + δΨ
(1)
x (u) + o(δ) as δ → 0.

The functional derivative operator at x is characterized by the
functional directional derivatives

Ψ
(1)
x (φk) = γxk ∈ R, k = 1, 2, . . .

in the directions of the basis functions φk . This is a data analytic
implementation of Gâteaux derivatives.



Representation

Ψ
(1)
x =

∞∑
k=1

γxk Φk ,

where γxk = Ψ
(1)
x (φk) is a scalar, and Φk denotes the linear

projection operator with

Φk(u) = Auk =

∫
u(t)φk(t)dt, for all u ∈ L2(T ).



Example: Functional linear model. Representing the regression
parameter function β in the eigenbasis φk , β(t) =

∑
k βkφk(t),

t ∈ T , leads to

ΨL(X ) = µY +
∞∑
k=1

βkAXk = µY +
∞∑
k=1

βkΦk(X ).

For any δ and arbitrary square integrable functions with
representations u =

∑
k Aukφk and x =

∑
k Axkφk ,

ΨL(x + δu) = µY +
∑
k

βk(Axk + δAuk) = ΨL(x) + δ
∑
k

βkAuk .

Then Ψ
(1)
x =

∑∞
k=1 βkΦk ⇒ γxk = βk . The functional

derivative does not depend on x , as Ψ
(1)
x (φk) = βk .



ADDITIVE MODELING OF FUNCTIONAL GRADIENTS

Consider additive functional operator
ΨA(X ) = E (Y c |X ) =

∑∞
k=1 fk(AXk),

subject to Efk(AXk) = 0, k = 1, . . ., for FPC scores AXk .

For functions x =
∑

k Axkφk and u =
∑

k Aukφk ,

ΨA(x + δu) =
∑
k

fk(Axk + δAuk) = ΨA(x) + δ
∑
k

f
(1)
k (Axk)Auk + o(δ),

so that for the functional additive model,

Ψ
(1)
A,x(u) =

∞∑
k=1

f
(1)
k (Axk)Auk =

∞∑
k=1

γA,xkΦk(u), γA,xk = f
(1)
k (Axk).



• Can easily extend to higher order derivatives due to additive
structure

• Asymptotics: For densely sampled functions, may obtain
derivatives through derivative estimates of the additive
functions, with the 1-d rates of convergence for derivative
estimation.



GRADIENTS FOR EGG-LAYING

• Predictor functions: Egg-laying trajectories (daily egg counts)
for cohort of 818 female medflies (Carey et al. 98) that live
≤ 20 days.

• Response: Lifetime fertility = total number of eggs laid over
lifetime

• Preprocessing: Square root transformation of egg counts

• Question: How do early reproductive trajectories influence
overall reproductive success.

• Tools: Gradient field and its visualization
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ESTIMATING DERIVATIVES FROM SPARSE DATA
Differentiating Karhunen-Loève representation:

X
(ν)
i (t) = µ(ν)(t) +

∞∑
k=1

Aikφ
(ν)
k (t), ν = 0, 1, . . . .

• Obtain estimated random effects Aik by conditioning as before
• Estimate µ(ν)(t) by known nonparametric 1-d differentiation,
applied to pooled scatterplots.

• How to obtain φ(ν)k ? Observe

dν

dtν

∫
T
G (t, s)φk(s)ds = λk

dν

dtν
φk(t),

implying

φ
(ν)
k (t) =

1
λk

∫
T

∂ν

∂tν
G (t, s)φk(s)ds.
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Locations of all pairs of points where bids are recorded for auction
data.



Estimated covariance surface from all pairs and estimated partial
derivative surface for auction data.
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DERIVATIVES OF TRAJECTORIES

• Obtain

X̂
(ν)
i ,K (t) = µ̂(ν)(t) +

K∑
k=1

Âik φ̂
(ν)
k (t).

for the derivatives of the random trajectories Xi .

• Choosing the number of included components K : e.g. by
Fraction of variance explained

• Asymptotic convergence results and confidence intervals for
the case of a Gaussian process

• In simulations, this differentiation method works much better
than single curve derivative estimation (splines, kernels, . . .)
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Fitted price trajectories and their first two derivatives for two
auctions.



DYNAMICS OF GAUSSIAN PROCESSES

From the Karhunen-Loève representation of processes X , obtain for
the covariance function for derivatives

cov{X (ν1)(t),X (ν2)(s)} =
∞∑
k=1

λkφ
(ν1)
k (t)φ

(ν2)
k (s), ν1, ν2 ∈ {0, 1}, s, t ∈ T .

Assuming Gaussianity of X ,(
X (1)(t)− µ(1)(t)

X (t)− µ(t)

)
=

( ∑∞
k=1 Akφ

(1)
k (t)∑∞

k=1 Akφk(t)

)

∼ N2

((
0
0

)
,

( ∑∞
k=1 λkφ

(1)
k (t)2 ∑∞

k=1 λkφ
(1)
k (t)φk(t)∑∞

k=1 λkφ
(1)
k (t)φk(t)

∑∞
k=1 λkφk(t)2

))



EMPIRICAL DIFFERENTIAL EQUATION

Population level: E{X (1)(t)− µ(1)(t) | X (t)} = β(t){X (t)− µ(t)}

Subject level:

X (1)(t)− µ(1)(t) = β(t){X (t)− µ(t)}+ Z (t), t ∈ T ,

with varying coefficient function

β(t) =
cov{X (1)(t),X (t)}

var{X (t)}
=

∑∞
k=1 λkφ

(1)
k (t)φk(t)∑∞

k=1 λkφk(t)2

=
1
2
d

dt
log[var{X (t)}], t ∈ T ,

and Gaussian drift process Z .



DRIFT PROCESS
Gaussian drift process is such that
(i) Z (t), X (t) are independent at each t ∈ T ; (ii) E{Z (t)} = 0;
(iii) Z has the representation

Z (t) =
∞∑
k=1

√
λk
2T 3 (2k − 1)π

∫ T

0
sin{(2k − 1)π

2T
u}

×{φ(1)k (t)− β(t)φ(t)} dW (u)

Integral equation version

X (t) = X (s) + {µ(t)− µ(s)}

+

∫ t

s
β(u){X (u)− µ(u)} du +

∫ t

s
Z (u) du,

for any s, t ∈ T , s < t.



LEARNING GAUSSIAN DYNAMICS

• For varying coefficient function β use plug-in estimates

β̂(t) =

∑K
k=1 λ̂k φ̂

(1)
k (t)φ̂k(t)∑K

k=1 λ̂k φ̂
2
k(t)

.

• dynamic regression to the mean (negative β)

• dynamic exponential growth (positive β)

• Interpretation within population model
E{X (1)(t)− µ(1)(t) | X (t)} = β(t){X (t)− µ(t)}



For drift process Z

var(Z (t)) =(∑
k λk(φ

(1)
k (t))2∑

k λkφ
2
k(t)− {

∑∞
k=1 λkφ

(1)
k (t)φk(t)}2

)
/
∑

k λkφ
2
k(t),

and
var{X (1)(t)} = β(t)2var{X (t)}+ var{Z (t)}.

Then the fraction of the variance of X (1)(t) explained by the
deterministic part of the differential equation is given by:

R2(t) =
var{β(t)X (t)}
var{X (1)(t)}

=
{
∑∞

k=1 λkφ
(1)
k (t)φk(t)}2∑∞

k=1 λkφk(t)2
∑∞

k=1 λkφ
(1)
k (t)2

.
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Left: Smooth estimate of the dynamic varying coefficient function
β for auction data. Right: Smooth estimates of the first (solid),
second (dashed) and third (dash-dotted) eigenfunction of drift
process Z .
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Left: Smooth estimates of the variance functions of X (1)(t)
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variance explained by the deterministic part of the dynamic
equation at time t.
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Regression of X (1)
i (t) on Xi (t) (both centered) at t = 125 hours

(left panel) and t = 161 hours (right panel), respectively, with
regression slopes β(125) = −.015 and coefficient of determination
R2(125) = 0.28, respectively, β(161) = −.072 and R2(161) = 0.99.



LEARNING DYNAMICS – NON-GAUSSIAN CASE
• Data Model. For n realizations Xi of an underlying process X ,
have Ni measurements Yij (i = 1, . . . , n, j = 1, . . . ,Ni ),

Yij = Yi (tij) = Xi (tij) + εij ,

with iid zero mean finite variance measurement errors εij .

• Linear Gaussian Dynamics. As before, with varying coefficient
function β,

X ′(t) = µX ′(t) + β(t){X (t)− µX (t)}+ Z2(t),

where Z2 is a zero mean drift process with
cov{Z2(t),X (t)} = 0.

• General Dynamics. There always exists a function f with

E{X ′(t) | X (t)} = f {t,X (t)}, X ′(t) = f {t,X (t)}+ Z (t) ,

with E{Z (t) | X (t)} = 0 almost surely and where f is
unknown. Learning dynamics corresponds to inferring f .



• Special Case: Autonomous Dynamics.

E{X ′(t) | X (t)} = f1(X (t)), f1 unknown

• Parametric Dynamics. Parametric differential equations

X ′i (t) = g{t,Xi (t), θi}

require extensive knowledge of underlying system – often
incorrect and hard to fit. Not much known for incorporating
random effects θi .



BERKELEY LONGITUDINAL GROWTH STUDY

• Dynamics of Human Growth of Interest

• Nonlinear Parametric Models: Preece-Baines, Triple-Logistic
Subject-by-subject fitting, limited efficiency

• Berkeley Growth Study – 54 girls with 31 height measurements
for ages 1 to 18, recorded at different time intervals, ranging
from three months (from 1 to 2 years old), six months (from 8
to 18 years old), to one year (from 3 to 8 years old).

• Learning dynamics:
– Gain a better understanding of the growth process.
– Distinguish between normal and pathological patterns of
development.
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Left panel: Estimated growth curves for 54 girls. Right panel: Estimated
growth velocity trajectories for 54 girls.



ESTIMATING THE DRIVING FUNCTION f

Adopt a two-step kernel smoothing approach to obtain an estimator for f
in E{X ′(t) | X (t)} = f {t,X (t)}:
• Step 1: Obtaining estimates for X (t) and X ′(t):

X̂i (t) =
1
hX

Ni∑
j=1

∫ sj

sj−1

YijK

(
u − t

hX

)
du,

X̂ ′i (t) =
1
h2
X ′

Ni∑
j=1

∫ sj

sj−1

YijK2

(
u − t

hX ′

)
du,

where sj = (tij + ti,j+1)/2 and hX > 0 and hX ′ > 0 are smoothing
bandwidths.

• Step 2: Trajectory estimates X̂ (t) and X̂ ′(t) from Step 1 are
combined to obtain a Nadaraya–Watson kernel estimator for f ,

f̂ (t, x) =

∑n
i=1 K{

X̂i (t)−x
bX
}X̂ ′i (t)∑n

i=1 K{
X̂i (t)−x

bX
}

.

utilizing bandwidths bX > 0.

• Under regularity conditions, this gives consistent estimators.



Left panel: Estimated surface f̂ (t, x) on a curved domain, characterizing
the deterministic part of the nonlinear dynamic model. Right panel:
Contour plot of the surface f̂ (t, x).



• Linear concurrent model. Relating two stochastic processes
X (t) and U(t) at each time t ∈ T , the linear concurrent
model captures a linear relationship between X and U through
a deterministic function β(t),

U(t) = µU(t) + β(t){X (t)− µX (t)}+ Z2(t),

where Z2(t) is a zero mean drift process with
cov{Z2(t),X (t)} = 0.

• Nonlinear concurrent model. Proposed methodology covers
the case where the link between U(t) and X (t) is nonlinear,

U(t) = f {t,X (t)}+ Z (t) ,

with E{Z (t) | X (t)} = 0 almost surely and
f {t,X (t)} = E{U(t) | X (t)}. Can establish consistency and
rates of convergence for two-step estimators.
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Each of the panels, arranged for ages t = 2, 4, 6, 8, 12, from left to right
and top to bottom, respectively, illustrates estimates f̂ (t, ·) of the
deterministic part of the nonlinear dynamic model (solid), the linear
estimates (dashed) and the scatterplot of observed data pairs
(x(t), x (1)(t)).



Lectures on FDA – Part VI

Correlation, Connectivity and Densities



BOLD (Blood Oxygen Level Dependent) Brain Signals
• Resting State fMRI: Subjects are told to relax and let their
mind flow freely while in the scanner

• BOLD Signals:
• Time courses that are measured at 240 time points (spaced 2

seconds apart) at each voxel
• One recording every two seconds
• Recording is more or less simultaneous over all voxels
• Signal reflects oxygen metabolism
• Preprocessing needed to improve alignment in time and space

and to eliminate interference of physiological signals such as
breathing and heartbeat

• Brain can be organized into “hubs” of voxels that are situated
around “seed voxels” and are relatively highly connected

• Data recorded at the UC Davis Neuroimaging Center (Owen
Carmichael) – we focus on 20 hubs that were identified by
Buckner et al (2009)
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Seconds

Figure: BOLD signals for the seed voxels of 20 hubs identified in Buckner
et al (2009), normal (left) and demented (right) subject



Quantifying Brain Connectivity

• How to quantify the similarity of BOLD signals across voxels
• Subject-specific “Pearson correlation” between voxels j and l :

ρjl =

∑K
k=1

(
Sjk − K−1∑K

k=1 Sjk

)(
Slk − K−1∑K

k=1 Slk

)
√∑K

k=1(Sjk − K−1
∑K

k=1 Sjk)2
∑K

k=1(Slk − K−1
∑K

k=1 Slk)2
,

where Sjk is the signal for the j-th voxel at the k-th timepoint.
• Corresponding correlation matrix is C = {ρjl}j ,l=1,...,L

• The “Pearson correlation" is a special case of a
functional correlation measure



Functional Correlation Measures

• Many such measures have been proposed over the years

• First proposed measure: Functional Canonical Correlation
(Leurgans et al 1993)

• For pairs of functions (X ,Y ), with L2 inner product
〈X ,Y 〉 =

∫
X (s)Y (s)ds, define

ρFCC = sup‖u‖=‖v‖=1 corr(〈u,X 〉, 〈v ,Y 〉)

• Requires to solve an inverse problem, which is bad news for
functional data (as inverses of compact operators are
unbounded): This makes functional canonical correlation a
very difficult exercise in regularization.



• Functional Singular Correlation. By changing the target
criterion to (u0, v0) = argsup‖u‖=‖v‖=1cov(〈u,X 〉, 〈v ,Y 〉), one
can avoid the inverse problem.

• The functional singular correlation (Yang et al 2010)
ρFSC = cov(〈u0,X 〉, 〈v0,Y 〉)/

√
var(〈u0,X 〉)var(〈u0,Y 〉)

is obtained from the singular components of (X ,Y )

• Dynamical Correlation. Define correlation as a cosine between
standardized curves (Dubin and Müller, 2005)

X ∗(t) =
X (t)− 〈X , 1〉

(
∫

(X (t)− 〈X , 1〉)2dt)1/2 , Y
∗(t) =

Y (t)− 〈Y , 1〉
(
∫

(Y (t)− 〈Y , 1〉)2dt)1/2

leads to the dynamical correlation ρ = E 〈X ∗k ,X ∗l 〉.

• The above version of dynamical correlation is the target of the
fMRI Pearson correlation measure in the limit for smooth
signals as the measurement times get denser.



Connectivity Density Analysis

• Adopting dynamic/“Pearson" correlation, we aim at intra-hub
analysis where the correlations between the voxels in a
11× 11× 11 cube around a centrally located seed voxel and
the seed voxel are considered

• Aim to describe intra-hub connectivity through the density of
the correlations observed within the hub. The intra-hub
connectivity for each subject is thus summarized by a density
function

• Goal: Modeling density functions as functional data



Data Analysis
Data from n = 68 Alzheimer’s patients recorded at the UC Davis
Alzheimer Center for the hub that was identified within the parietal
lobule by Buckner et al (2009).



Figure: Kernel density estimates for the time course correlations between
voxels in the parietal lobule hub for n = 68 patients



Densities as Functional Data

• Random densities f (one density observed for each subject) are
constrained functional data since

∫
f = 1, f ≥ 0.

• Therefore, density functions do not live in a linear space and
linear methods such as Functional Principal Component
Analysis (FPCA, Kneip & Utikal 2001) are suboptimal.

• How to address this problem?
Transform densities f so that ψ(f ) is in a linear functional
space, then perform FPCA there and transform back.



The Transformation Approach

• Data are f ∼i .i .d . F for a density valued process F

• Observe n (random) density functions f1, . . . , fn defined on a
common interval [0, 1]. Denote the space of continuous and
strictly positive densities on [0, 1] by G.

• Find a suitable continuous and invertible transformation
ψ : G → L2(T )



Sample density estimates

• For a random density f in the sample: Usually do not observe
f , only i.i.d. sample W1, . . . ,WN drawn from f . Then f needs
to be estimated from this sample of random size N.

• Consistency of the transformation approach via construction of
modified kernel estimator that produces uniformly consistent
bona fide density estimates, satisfying
supf ∈GE [d2(f̂ , f )] = O(h), where h is the smoothing
bandwidth and d2 the L2 distance.



Examples for Transformations G ↔ L2

• Log hazard transformation

ψH(f )(t) = log(h(t)) = log
{

f (t)

1− F (t)

}
, t ∈ [0, 1− δ].

Special care needs to be taken for the inverse on x ∈ (1− δ, 1].

• Log quantile transformation

ψQ(f )(t) = log(q(t)) = − log{f (Q(t))}, where q = Q ′ = F−1′.

Inverse from X (t) = ψQ(f )(t),

F−1(t) =

{∫ 1

0
eX (s) ds

}−1 ∫ t

0
eX (s) ds



Transformation Modes of Variation

• Construct modes of variation in the transformed space for
processes X = ψ(f ) and map back to density space, i.e.,

ψ−1
(
ν + α

√
λkφk

)
, α ∈ R,

where (λk , φk) are k-th eigenvalue/eigenfunction of X .

• This leads to the transformation modes of variation

gk(x , α, ψ) = ψ−1
(
ν + α

√
λkφk

)
(x).



• The resulting representations of the original densities in the
sample are

fi (x ,K , ψ) = ψ−1

(
ν +

K∑
k=1

Aikφk

)
(x),

substituting suitable estimates.

• Choosing the truncation point K by fraction of variance
explained.



Figure: First (above) and second (below) modes of variation
(α1 = .1, .25, 0.25, .75, 0.9) for the distributions of seed voxel correlations
for n = 68 patients from the Davis study. FPCA (left) and Log Quantile
Density Transformations (right). Black line is the mean.



Figure: Fraction of variance explained for K = 1, 2, 3 components, for
Log Quantile Density transformation (red) and FPCA (blue)

Number of Components K 1 2 3 4
FPCA 0.180 0.185 0.193 0.201
LQD 0.180 0.176 0.169 0.173

Table: Estimated mean squared cross-validation prediction errors for
functional linear model, predicting Executive Cognitive Test Score



Lectures on FDA – Part VII

Function-valued stochastic processes

Chen & Müller JASA 2014
Chen, Delicado & Müller JASA in press



Dependent Functional Data

• Spatial Dependency (spatially indexed functions considered eg.
in Nerini et al 2010, Delicado et al 2010, Gromenko et al 2013)

• Temporal Dependency: Linear models for random functions
observed repeatedly over time (eg Greven et al 2010;
Zipunnikov et al 2012; Horvath and Kokoszka (book) 2012)

• Hierarchical linear functional models, functional ANOVA (eg
Morris et al 2006; Crainiceanu et al 2009)

• Examples for samples of repeatedly observed functions:
Mortality profiles, repeatedly observed over calendar years for
many countries; Daily movement profiles for subject tracking.
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Changes in mortality curves (quantified as log-hazard functions
derived from lifetables) for Swedish women born 1881-1910 (Chiou
& Müller 2010): Repeatedly observed functional trajectories per
country, for a sample of countries



Function-Valued Stochastic Processes
• Traditional:

T × Ω→ X (t, ω) ∈ R, X ∈ L2, X is smooth

• Now the value of the process at each t ∈ T is a random
function X (t, ·) on a domain S:

T × Ω→ X (t, ·, ω) ∈ L2(T × S),

with

E (X (t, s)) = µ(t, s), C (t1, s1, t2, s2) = cov(X (t1, s1),X (t2, s2)).

• Data can be viewed as functional data in two arguments, the
time index t of the stochastic process and the argument s of
the observed functions. These repeatedly observed functions
are dependent within subject.



Karhunen-Loève (KL) Representation for
Function-Valued Stochastic Processes

X (s, t) = µ(s, t) +
∞∑
r=1

Zrγr (s, t), s ∈ S, t ∈ T .

Here {γr : r ≥ 1} are the orthonormal eigenfunctions of the linear
operator with kernel C , forming a basis on L2(S × T ),
{Zr =

∫
γr (s, t)X c(s, t)dsdt : r ≥ 1} are the (uncorrelated)

functional principal components (FPCs) with E(Zr ) = 0.

• First K components explain as least as much variance as any
other K−dimensional representation, for all K

• Arguments are symmetric and the effects of s and t hard to
separate: For many applications separation is crucial, and the
KL representation hard to interpret. In demographic
applications, t is calendar time and s the age of a cohort.

• Covariance estimation for sparse designs requires 4-dimensional
smoothing.



A Tensor Product Representation
• For an arbitrary orthonormal basis {ψj : j ≥ 1} of L2(S), one
always has

X (s, t) = µ(s, t) +
∞∑
j=1

ξj(t)ψj(s)

with mean function µ and random coefficient functions
{ξj : j ≥ 1}

• Applying the KL representations of the random functions ξj ,

ξj(t) =
∞∑
k=1

χjkφjk(t),

with eigenfunctions φjk and FPCs χjk , leads to

X (s, t) = µ(s, t) +
∞∑
j=1

∞∑
k=1

χjkφjk(t)ψj(s).



Is there a best basis ψj?

Define the the marginal covariance function,

G (s, u) =

∫
T
C ((s, t), (u, t)) dt, with s, u ∈ S,

i.e., averaging the autocovariance function over t.

Then the eigenfunctions/eigenvalues (ψj , τj) of the linear operator
with symmetric non-negative kernel G are the best basis in the
following sense: For any K ≥ 1,

(ψ1, . . . , ψK ) = argmin
(z1,...,zK )

E

∫
T
‖X c(·, t)−

K∑
j=1

〈X c(·, t), zj〉Szj‖2Sdt

 ,

i.e., the basis ψj explains most of the variance on average when
averaging over t (Chen et al 2014, preprint).



Marginal KL Representation
and Marginal FPCA )

• Using the optimal basis ψj leads to the representations

X (s, t) = µ(s, t) +
∞∑
j=1

ξj(t)ψj(s)

= µ(s, t) +
∞∑
j=1

∞∑
k=1

χjkφjk(t)ψj(s).

• This marginal KL representation differs from the standard KL
representation

• The roles of s and t are distinguished
• φjm, φkp not necessarily orthogonal for j 6= k , and χjm, χkp not
necessarily uncorrelated

• Contains tracking functions ξj(t), j ≥ 1, that describe the
change in shapes of the repeatedly observed functions as time
t is increasing.



Estimation
• Pool the data of all subjects to obtain an estimate µ̂(s, t) of
the mean function µ(s, t) and use this to obtain centered data
(cross-sectional averaging and interpolation or smoothing)

• Center the pooled data and obtain estimates Ĝ (s1, s2) of the
marginal covariance function G (s1, s2), by (a) cross-sectional
averaging and interpolation, omitting the data for the diagonal
s1 = s2 that are contaminated; (b) then averaging over the
observation grid in direction t.

• Obtain the eigenfunctions ψ̂j and eigenvalues τ̂j associated
with Ĝ by standard methods and the FPC function estimates

ξ̂i ,j(t) =
∫
X̂ c
i (s, t)ψ̂j(s)ds.

• For each fixed j , obtain estimates for the FPCs χijk and
eigenfunctions {φjk(t) : k ≥ 1} for the FPC function estimates
{ξi ,j(t), j ≥ 1}.



• Overall representation

X̂i (s, t) = µ̂(s, t) +
P∑
j=1

ξ̂i ,j(t)ψ̂j(s)

= µ̂(s, t) +
P∑
j=1

Kj∑
k=1

χ̂i ,jk φ̂jk(t)ψ̂j(s).

• The included number of components P is selected by the
fraction of variance explained (FVE) criterion, finding the
smallest P such that

∑P
j=1 τ̂j/

∑M
j=1 τ̂j > 1− p, where M is

large and we choose p = 0.15.

• The number of included components Kj is determined by a
second application of FVE, where the variance explained by
each term (j , k) is

1
n

n∑
i=1

χ̂2
i ,jk/

1
n

n∑
i=1

||X (s, t)− µ̂(s, t)||2S×T .



Consistency

Under regularity conditions, perturbation results such as those of
Bosq (2000) imply for 1 ≤ j ≤ P :

‖Ĝ (s, u)− G (s, u)‖ = Op((1/n)1/2)

|τ̂j − τj | = Op((1/n)1/2)

‖ψ̂j(s)− ψj(s)‖ = Op((1/n)1/2)

sup1≤m≤M |ξ̂i ,j(tim)− ξi ,j(tim)| = Op((log n/n)1/2)



Marginal FPCA for Fertility Data

• Age-Specific Fertility Rate (AFSR) for 17 countries, 1951 to
2006 (Human Fertility Database 2013 (HFD-2013))

• AFSR for age s (expressed in years) and calendar year t:

ASFR(s, t) =
Births during the year t to women of age s

Person-years lived for the year t by women of age s
.

• Ages of mothers s range from 12 to 55 years old.

• Data: 17 independent units (countries), corresponding to a
realization of the function valued stochastic process ASFR(·, t)
at each year t. Observation grid (age, calendar-year) has
44× 56 equidistant points.



Abbreviation Country name
AUT Austria
BGR Bulgaria
CAN Canada
CHE Switzerland
CZE Czech Republic
FIN Finland
FRA France
GBR_SCO U.K., Scotland
GBRTENW U.K., England and Wales
HUN Hungary
JPN Japan
NLD Netherlands
PRT Portugal
SVK Slovakia
SWE Sweden
USA U.S.A.
ESP Spain
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Mean function µ(s, t)

1960 1970 1980 1990 2000

20
30

40
50

ASFR sample mean

Year

A
ge

Year

1960

1970

1980

1990

2000

Age

20

30

40

50

A
S

F
R

 sam
ple m

ean

0.00

0.05

0.10

0.15



Empirical observations

• Fertility rates differ across countries (e.g., Sweden/Austria vs
USA).

• Mother’s ages at the fertility peak differ (Slovakia/Czech
Republic vs Japan/Spain).

• The baby boom in the 1950’s-60’s was more expressed in USA
and Canada than in other countries.

• The timing of fertility changes in calendar time differs across
countries (Netherlands/Finland vs Spain/Portugal).



Marginal FPCA

ASFR. Country−year data
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First three eigenfunctions ψ̂j(s), j = 1, 2, 3, for fertility= f (age),
with FVE of 95.8%.
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Japan, 1966

• In the third FPC function, Japan (grey) shows an anomalous
behavior at year 1966.

• This is reflected in eigenfunction 1 of the third FPC function.

• We checked for the reason of this anomaly:
In 1966 the total fertility in Japan suddenly declined to the
lowest value ever recorded – 1966 was the year of the
Hinoe-Uma (Fire Horse, a calendar event that occurs every 60
years) – there is a belief that girls born during Hinoe-Uma are
unlucky.

• About a quarter of normal annual births were either lost in
1966 or were shifted to 1965 or 1967.



Trackplot {(ξ1(t), ξ2(t)), t ∈ T }
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FPCA representation
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Comparing multidimensional FPCA and marginal FPCA
• As expected, standard FPCA is more parsimonious than
marginal FPCA for the fertility data: Four FPCs derived from
the 2-dimensional Karhunen-Loève expansion explain about the
same amount of variance as 6 terms from the marginal FPCA.

• Marginal FPCA represents the functional data as a sum of
terms that are products of two functions, each depending on
only one argument. This provides for much better
interpretability and feature discovery.

• For instance, the second eigenfunction ψ2 of the marginal
FPCA corresponds to a level of fertility component, with a
country-specific time-varying multiplier ξ2(t). Standard FPCA
does not pinpoint these key features.

• Marginal FPCA makes it much easier than standard FPCA to
analyze the time dynamics of the fertility process.



Common Principal Component Case

• This is a special case, where in the marginal FPCA model

X (s, t) = µ(s, t) +
∞∑
j=1

∞∑
k=1

χjkφjk(t)ψj(s)

the eigenfunctions φjk(t) in the Karhunen-Loève expansion of
the random functions ξj(t) do not depend on j .

• This leads to the simplified tensor product representation

X (s, t) = µ(s, t) +
∞∑
j=1

∞∑
k=1

χjkφk(t)ψj(s).

• Application of this Common Principal Component model
yielded similar results for the fertility data



• A special case of the marginal FPCA model, less parsimonious,
but with improved interpretability. Can be consistently fitted
by adopting the same trick as used in the marginal model
twice, namely to base eigenanalysis on average covariances.

• Conditional FPCA. A previous approach for function-valued
stochastic processes (Chen & Müller 2012),

Xi (s|t) = µ(s|t) +
∞∑
k=1

ηk(t)%k(s|t), ηk(t) =
∞∑
p=1

∞∑
p=1

ζikpςkp(t)

where %k(·|t) is the k-th eigenfunction of the conditional
process at longitudinal time t and ηk(t) are the random
expansion coefficient functions, that are further expanded in
their eigenfunction basis {ςkp, p ≥ 1}.

• Adopts two repeated FPCAs, the first (conditional) one in
direction s for each fixed t and the second for the random
functions ηj(t), leading to challenges for theory and practice.



Outlook

• There are 4+ models to choose from:
• Higher-dimensional Karhunen-Loève expansion and

unrestricted FPCA – most parsimonious and least interpretable
• Marginal FPCA
• Marginal FPCA with Common Principal Components
• Conditional FPCA

• Which model is most useful/preferred depends on the
application, comparative model evaluation is good practice.

• Combining Stringing with Models for Function-Valued
Stochastic Processes. High-dimensional functional data (gene
expression time courses for p genes and n subjects, p >> n)
can be stringed, thereby creating observations of a
function-valued process. Then apply one of the models that
have been discussed (research in progress).



Lectures on FDA – Part VIII

Nonlinear Methods for
the analysis of functional data

Chen & Müller AS 2012



TIME WARPING FOR FUNCTIONAL DATA

• Functional data may contain amplitude and time variation
• Time variation is a nonlinear component
• Usually time and amplitude variation cannot be separated:
Identifiability Problem

• Square integrable functional data can always be fully expanded
in a complete basis of L2, such as eigenbasis, Legendre basis or
Fourier basis, regardless of whether there is time variation or
not

• Motivation for modeling warping/alignment/registration:
• Obtain more parsimonious models with fewer components
• Better data interpretation
• Better prediction



APPROACHES FOR
TIME WARPING AND CURVE SYNCHRONIZATION

• Dynamic Time Warping (Sakoe & Chiba 1978)

• Shape-invariant modeling (Stützle, Gasser et al. 1980; Kneip
& Gasser 1988)

• Landmark method (Structural Analysis, Kneip & Gasser 1992;
Gasser & Kneip 1995)

• Nonparametric MLE (Rønn 2001, Gervini & Gasser 2005)

• Registration and Fitting (Kneip & Ramsay 2008)

• Pairwise Curve Synchronization (Tang & Müller 2008)

• Clustering and Warping (Tang & Müller 2009)

• Density synchronization (Bolstad et al 2003, Zhang & Müller
2011)



Yeast Cell Cycle Data
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EXAMPLE: SIMPLE TIME-SHIFT WARPING
• Assume

Xi (t) = Xi (t, τi ) = µ(t − τi ) + δZi (t − τi ),

for random time shifts τi .
• For a pair of random curves Xi (t) and Xj(t), the relative time
shift is sij = τi − τj , i , j = 1, . . . ,K .

• For s̃ij = argmins d(Xj(t − s),Xi (t)), with d the L2 distance,
and

∆ij(s) = E

(∫
T

(
Xi (t, τi )− Xj(t − s, τj)

)2
dt
∣∣∣ τi , τj) ,

under regularity conditions,

s̃ij = argmin
s

∆ij(s) = sij + O(δ) = τi − τj + O(δ).

(Leng & M 2004), motivating s̃ = Aτ + ε for a design matrix
A, and

τ̂ = (ATA)−1AT s̃.



TIME ORDERING FOR
YEAST GENE EXPRESSION PROFILES

• Yeast RNA Expression Level Data (Alter, Brown & Botstein
2000)

• mRNA levels of 6108 cell-cycle genes from Saccharomyces
cerevisiae obtained from α-factor synchronized yeast cells

• Consider subset of 82 gene profiles with expression measured
at 7-minute intervals for a total of 119 minutes, recorded as
normalized log2 ratios

• Cell phases: G1, S, G2, M



Yeast Cell Cycle Data
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Heat Map



Clustering Time Shifts



FPC2 vs FPC1 for Yeast Cell Cycle Data
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Berkeley Growth Study: Girls
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MANIFOLDS IN FUNCTION SPACE

“Simple” functional manifoldsM in L2 space that are isomorphic to
a subspace of the Euclidean space

Represented by coordinate map ψ−1 : Rd →M⊂ L2, which is
bijective, such that ψ,ψ−1 are continuous and isometric.

d is the intrinsic dimension of the manifoldM.

Probability measure Q for random vectors ϑ ∈ Rd leads to induced
probability measure Qψ in L2 by Qψ(A) = Q(ψ(A)).

Distances on manifold M: L2 distance – not adapted to
nonlinearity;
Geodesic distance dg (x1, x2) is the length of the shortest path on
M connecting the two points, and therefore is adapted toM.



GLOBAL MANIFOLD LEARNING

Geodesic distances and ISOMAP (Tenenbaum 2000) under
isometry assumption

The Swiss Roll



FUNCTIONAL MANIFOLD MEAN

Define

µ = E{ψ(X )}, µM = ψ−1(µ),

where µ is the mean in the d-dimensional representation space, and
µM is the manifold mean in L2 space.

Can show: µ is the Fréchet mean with regard to geodesic distance
and does not depend on specific choice of map ϕ.

Traditional cross-sectional means for functional data in L2 can be
far away from the data cloud and then do not represent the data in
a meaningful way.

Going beyond the mean: Analogous problems when linearly
representing random functions in an orthonormal L2 basis.



MANIFOLD MODES OF VARIATION

For functions inM⊂ L2: eigenfunction expansion

X (t) = µ(t) +
∞∑
k=1

Akφk(t), t ∈ T , Ak =

∫
T

(X (t)− µ(t))φk(t)dt

will not generally provide a parsimonious representation.

Similarly, eigenfunction-based modes of functional variation

Xj ,α = µ+ αλ
1/2
j φj , j = 1, 2, . . . , α ∈ R,

generally will not satisfy Xj ,α ∈M.



Functional manifold component (FMC) vectors eMj ∈ Rd ,
j = 1, . . . , d , are defined by the eigenvectors of the covariance
matrix of ψ(X ) ∈ Rd , i.e.,

Cov(ψ(X )) =
d∑

j=1

λMj (eMj )(eMj )T

where λM1 ≥ . . . ≥ λMd are the eigenvalues of Cov(ψ(X )).

Manifold modes of functional variation

XMj ,α = ψ−1(µ+ α(λMj )
1
2 eMj

)
, j = 1, . . . , d , α ∈ R,

where µ is the mean in the d-dimensional representation space.
• Only finitely many modes of variation, at most d .

• The manifold modes of variation XMj ,α are uniquely defined

• Functions X ∈M can be uniquely represented by a d-vector
of FMCs ϑ = (ϑ1, . . . , ϑd) ∈ Rd , in terms of

X = ψ−1(µ+
d∑

j=1

ϑje
M
j ), ϑj = 〈ψ(X )− µ, eMj 〉, j = 1, . . . , d



IMPLEMENTATION
Tenenbaum et al (ISOMAP), Science (2000): Estimate ψ by

ψ̂ = argminψ
n∑

i ,j=1

{||ψ(Xi )− ψ(Xj)|| − dg (Xi ,Xj)}2,

where the infimum is taken over all functions ψ : L2 → Rd and
dg (·, ·) is the geodesic distance.

• Can be interpreted as a modified version of MDS.

• In practice: Construct ψ only over finite sample points Xi .

• Starting point: Observed data are Yij = Xi (tij) + εij .
⇒ Need to recover functions and their L2 distances:
Pre-smoothing (for dense designs only) or PACE method (for
both dense and sparse designs)



• Require small distances for ISOMAP, since only near neighbor
relations matter (Dijkstra’s local graph algorithm)

• FPCA representation with large number of included
components

• Directly track L2 distances with conditioning for noisy or
sparse data (Peng & M 2008, AOAS)

• Recovered functions are not exactly located on the manifold
M, due to measurement errors, sparse measurements, etc.,
even if true functions are on manifold: Modify Dijkstra’s
algorithm to allow for local connection paths to occur only in
relatively dense areas of the data, by adding a penalty.

• Interpolation of the embedding map ψ−1: For θ ∈ Rd ,

ψ̂−1(θ) =

∑
i κ
(
H−1(ψ̂(Xi )− θ)

)
X̂i∑

i κ
(
H−1(ψ̂(Xi )− θ)

) ,

where κ is a d-dimensional kernel, H a smoothing parameter.



• Choice of intrinsic dimension d :
Fraction of distance explained (Tenenbaum et al. 2000)

• Auxiliary parameters (including smoothing bandwidths)
selected by cross-validation

• Asymptotics: Under regularity conditions, the estimated
manifold mean and manifold modes X̂Mj ,α are consistent as
n→∞. Rates of convergence have been recently derived in
Chen & M (2012, AS). They depend on convergence behavior
of Isomap.

• Proof: Extend local convergence to global convergence of the
manifold embedding map ψ−1. Use properties of
d-dimensional smoothers.



SIMULATION I

Simulating functional manifolds:
n = 200, 30 equi-spaced observations per function, signal-to-noise
ratio is 2.

M1 =
{
X ∈ L2([−4, 4]

)
: X (t) = µ

(
hα(t)

)}
,

where µ(t) = 2√
π
exp{−1

2(t + 2)2}+ 1√
2π

exp{−2(t − 2)2}.

Random warping of a common shape function µ, which has two
peaks, where the time warping function hα is generated from the
cumulative Beta distribution family and α is a random parameter,
α = max(−1,Z ), where Z ∼ N(0, 0.09).

Dimension d = 1
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SIMULATION II

M2 =
{
X ∈ L2([−4, 4]) :

X (t) =
1√
2πα2

exp[− 1
2α2

(
t − β

)2
], α > 0, β ∈ R

}
.

Collection of Gaussian densities, corresponding to a shift-scale
family, where α = max(0,Z ), Z ∼ N(1, 0.04) and β ∼ N(0, 1).

Dimension d = 2
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Yeast Cell Cycle Data
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FPC2 vs FPC1 for Yeast Cell Cycle Data
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First Principal Mode of Variation and Manifold Mode of
Variation for Yeast Cell Cycle Data
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FPC2 vs FPC1 for Berkeley Growth Curves
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Growth Curves: Representation Space and Trajectory Fits
with Principal and Manifold Components
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Growth Curves: Trajectory Fits with Principal and Manifold
Components
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Growth Curves: Principal and Manifold Modes of Variation
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Log Hazard Rates Reflecting Human Mortality for 44
Countries
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Trajectory Fits with Principal and Manifold Components for
Human Mortality
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FUNCTIONAL MANIFOLD REGRESSION

• Apply manifold embedding to functional regression problems,
especially when time warping or other nonlinear features may
play a role.

• For Y ∈ R, X ∈M ⊂ L2 :

E (Y | X ) = E (Y | ψ(X )) = E (Y | θ), θ ∈ Rd .

Can use linear, additive or single index regression.
• Advantage: Predictor is low-dimensional due to the nonlinear
dimension reduction. No need to worry about functional
asymptotics where number of included basis functions
increases.

• Application: Predict adult height from available height
measurements on [0, 12] for growth data. Functional linear
manifold regression reduces cross-validation prediction error by
about 15% compared to functional linear regression.


