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Dimension Reduction for Functional Data

Since functional data are intrinsically infinite dimension, their
analyses often rely on dimension reduction methods.

There are two types of dimension reduction for functional data:

- one on the data themselves and

- another on the statistical modeling of such data.

The latter is the topic of functional regression (Part III).

In Part II we focus on the first one:

- dimension reduction on the data.
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Review of Principal Component Analysis

Principal component analysis for multivariate (p-dim) data is a
dimension reduction tool to transform (linearly) the data to
orthogonal (p-dim) data so that the first few (k) of them explains
most of the variation.

The first eigenfunction φ1 = argmax
φ∈Rp, ‖φ‖=1

var(〈X − µ), φ〉)

- The first principal direction φ1, represents the direction of the
data with the largest variation.

The second eigenfunction φ2 = argmax
φ∈Rp, ‖φ‖=1, φ⊥φ1

var(〈(X − µ), φ〉)
.

.

.
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Which one is the least squares line?
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Review of PCA

The least squares line minimizes the vertical squared distance, but
the first PC line minimized the perpendicular squared distance.

In this example the first PC explains 75% of the variations.
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How would you extend PCA to functional data?

The first eigenvector φ1 = argmax
φ∈Rp,‖φ‖=1

var(〈X − µ, φ〉)

- The first principal direction φ1, represents the direction of the
data with the largest variation.

The second eigenvector φ2 = argmax
φ⊥φ1,φ∈Rp,‖φ‖=1

var(〈X − µ, φ〉)

All we have to do is to change the inner product from a vector to a
function in a Hilbert space (this explains why we need a Hilbert
space structure for functional data).

e.g. 〈f, g〉 =
∫
I f(t)g(t)dt, for any functions f and g in L2(I).

8/78



How would you extend PCA to functional data?

The first eigenvector φ1 = argmax
φ∈Rp,‖φ‖=1

var(〈X − µ, φ〉)

- The first principal direction φ1, represents the direction of the
data with the largest variation.

The second eigenvector φ2 = argmax
φ⊥φ1,φ∈Rp,‖φ‖=1

var(〈X − µ, φ〉)

All we have to do is to change the inner product from a vector to a
function in a Hilbert space (this explains why we need a Hilbert
space structure for functional data).

e.g. 〈f, g〉 =
∫
I f(t)g(t)dt, for any functions f and g in L2(I).

8/78



Definition of FPCA

The first eigenfunction φ1
= argmax

φ∈L2(I),‖φ‖=1

var(〈X − µ, φ〉

= argmax
φ∈L2(I),‖φ‖=1

var(
∫

[X(t)− µ(t)]φ(t)dt)

The first principal direction φ1, represents the direction of the data
with the largest variation.

The second eigenfunction φ2
= argmax

φ⊥φ1,φ∈L2(I),‖φ‖=1

var(
∫

[X(t)− µ(t)]φ(t)dt)
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Properties of FPCA

For vector X, the first eigenvector φ1
= argmax

φ∈Rp,‖φ‖=1
var(〈X − µ, φ〉)

is equivalent to the eigenvector corresponding to the largest
eigenvalue of the covariance matrix cov (X).

=⇒ cov(X)φ1 = λ1φ1 and cov(X) =
∑p

k=1 λkφ
T
k φk.

This concept can be extended to function data but we need to
define what “cov(X)φ1” means.
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Properties of FPCA

This leads to the definition of a covariance operator.

Covariance function: Σ(s, t) = cov(X(s), X(t)), s & t ∈ I.

We ’ll use the same notation Σ for the covariance function and its
operator and define the covariance operator Σ
(from L2(I) to L2(I)) as:

Σ(f) =

∫
I

Σ(s, t)f(s)ds, for any f ∈ L2(I).

FPCA = spectral decomposition of the covariance operator:

Σ(φk) = λkφk,

λk & φk are the eigenvalues and eigenfunctions of Σ.
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Properties of FPCA

Mercer’s theorem (under mild assumption) implies that

Σ(s, t) = Σ∞k=1λkφk(s)φk(t),

the convergence above is uniform over s and t.

This leads to the Karhunen-Loève decomposition:

X(t) = µ(t) + Σ∞k=1Akφk(t),

var(Ak) = λk, the k-th largest eigenvalue of Σ,

Ak =
∫
I [X(t)− µ(t)]φk(t)dt, are uncorrelated PC (scores).

⇒ Isometry between X(·) and {Ak : k ≥ 1}.
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Steps to FPCA (Yao, Müller & W., 2005)

1 Estimate the mean µ(t) and covariance Σ(s, t).
-This usually involves smoothing as was done in Part I.

2 Estimate the eigenvalues and eigenfunctions of Σ(s, t).
- This is done through discretizing the covariance function on a
dense time grid, then perform spectral analysis on the discretized
covariance matrix.

3 Estimate the PC scores Ak =
∫

(X(t)− µ(t))φk(t)dt.
- Numerical integration is used to approximate the integral but this
requires intense (ni →∞) measurements of the functional data.
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Steps to FPCA (Yao, Müller & W, 2005)

1 When functional data are observed at a few time points, the
numerical integration method does not work.

2 Yao, M. and W. (2005) proposed PACE (principal analysis via
conditional mean) to resolve this issue.

Âik = Ê(Aik| Yi) = λ̂k φ̂
T
k Σ̂−1Yi (Yi − µi),

where Yi = (Yi1, . . . , Yini) is the observed ni-dim data (possibly
with measurement errors) for the ith subject.
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Recover the Functional Data through FPCA

Use Karhunen Loève decomposition to recover the latent curve

X(t) = µ(t) +

∞∑
k=1

Akφk(t)

⇓

X̂ik(t) = µ̂(t) +

∞∑
k=1

Âikφ̂k(t)
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Convergence Rates for FPCA: Dense Case

Both the mean and covariance functions can be estimated at the√
n−rate.

Perturbation theory then implies that the eigen-values and
eigen-functions can be estimated at the

√
n− rate.

- Life is easy!
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Convergence Rates for FPCA: Non-dense Case

The mean function can be estimated at the one-dim
nonparametric rate.

The covariance function can be estimated at the 2-dim
nonparametric rate.

Perturbation theory implies that the eigen-values and
eigen-functions can be estimated at the 2-dim nonparametric rate,
but this rate is suboptimal!

Hall, M. and W. (2006) showed that by undersmoothing the
covariance function:

the first K (finite) eigen-values can be estimated at the
√
n-rate ,

the first K (finite) eigen-functions can be estimated at the one-dim
nonparametric rate.
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AIDS CD4: 6 Randomly Selected Subjects
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http://www.stat.ucdavis.edu/PACE/

19/78



Outline

1 Introduction to FPCA
What Does FPCA Offer?

2 Covariate adjusted FPCA
FPCA with Multidimensional Covariates
What’s Next After FPCA?

20/78



Outline

1 Introduction to FPCA
What Does FPCA Offer?

2 Covariate adjusted FPCA
FPCA with Multidimensional Covariates
What’s Next After FPCA?

21/78



What Does FPCA Offer?

The Karhunen-Loève decomposition is useful to impute functional
data.

FPCA provides a way to project an infinite dimensional function
onto a finite K-dimensional subspace,
the space spanned by the first K eigenfunctions.

=⇒ The main information of functional data can be summarized
by finitely many (K) PC components.

- The proportion of variation explained by the first K PC

components is the ratio
∑K

k=1 λk∑∞
k=1 λk

.
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What Does FPCA Offer?

This process transfers functional data to K-dim multivariate data
consisting of the first K PC scores, so any existing method for
multivariate data can be applied to these scores providing
off-the-shelf methods for functional data.

Examples: Clustering and classification of functional data.

Caveat: In theory K = Kn →∞, so the post-FPCA theory still
falls into the nonparametric paradigm.
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What Does FPCA Offer?

While it is possible to expand functional data with any basis
functions, such as B-splines, Fourier bases, wavelets, etc.,
FPCA provides the most parsimonious way to do so.

By virtue of its definition, FPCA requires less components than
other basis functions.

However, the basis functions for FPCA needs to be estimated,
which makes the theory a little harder than for preselected basis
functions.
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What Does FPCA Offer?

The shape of µ and φk may help us to settle on a more
parsimonious or parametric model.

Example: CD4 counts.
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Mean Curve: CD4 counts of all patients
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AIDS CD4: Eigenfunctions
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Model Building through Mean and Eigenfunctions

AIDS data has been modeled as linear mixed-effects model with
linear time trend and random effects on the intercepts only.

The linear time trend is arguable but the random intercept is not
far off as the first eigenfunction looks flat and already explains
over 84% of the variation in the data.

However, we can increase the total variation explained to over 96%
if a second PC is added.

- Note that even with two components, the computational effort
may be less than that for a good parametric random effects model,
which may need four random effects (if a piecewise linear function
is used to capture the shape of the AIDS data) and EM-algorithm.
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What Else can FPCA Offer?

The principal directions φk explain the modes of variations of
functional data (Rice and Jones, 1991).
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AIDS CD4: Modes of Variation
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AIDS CD4: Modes of Variation
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AIDS CD4: Modes of Variation
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Functional Box Plot

The above plots remind us of Tukey’s Box plot for scalar data.

Box plots have been extended to functional data, but the extension
is non trivial and still open for improvements!

Why?

There are two R-packages for functional box plots.

Hyndman and Shang (2010, JCGS) - rainbow, box, and bag plots

Sun and Genton (2011, JCGS) - boxplots
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References for FPCA

Functional data

Dauxois, Pousse & Romain (1982)
Rice & Silverman (1991)
Cardot (2000)
Hall & Hosseini-Nasab (2006)

Longitudinal data

Shi, Weiss & Taylor(1996)
James, Sugar & Hastie(2000)
Rice & Wu (2001)
Yao, Müller & Wang (2005)
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End of FPCA

36/78



Outline

1 Introduction to FPCA
What Does FPCA Offer?

2 Covariate adjusted FPCA
FPCA with Multidimensional Covariates
What’s Next After FPCA?

37/78



Covariate Adjusted FPCA

The above FPCA assumes that data come from one population.

What if we have additional information of a covariate Z (a scalar) or
Z(t) (a functional or longitudinal covariate)?

This is straightforward for dense functional data with scalar
covariate Z.

Chiou, Müller & W. (2003)
Cardot (2006)

Their methods do not work for sparse functional data or
longitudinal covariates.
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Chiou, Müller & W. (2003, JRSS B)

First, pool all the data together to get the overall mean function
µ(•) and eigenfunctions φk(•) of the overall covariance function.

⇒ Y (t) = µ(t) +
∑

k Akφk(t)

Next, incorporate the covariate information through the
conditional mean function :

µ(t, Z) = E(Y (t)|Z) = µ(t) +
∑
k

E(Ak|Z)φk(t)

This requires consistent estimates of Ak, which is not feasible for
sparse functional data. (Why?)
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Cardot (2006, SJS)

Assume the whole process can be observed without measurement
errors, but the mean µ(t, z) and covariance Σ(s, t, z) functions
both vary with Z = z, hence the eigenfunctions and PC scores also
vary with z.

Y (t, z) = µ(t, z) +
∑

k Ak(z)φ(t, z).

Since the whole random functions are observable, one can perform
one-dimensional smoothing on Z to estimate µ(t, z) (at each fixed
time t) and Σ(s, t, z) (at each fixed (s, t).

This approach does not work for sparse or irregular dense data.
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Jiang & W. (2010, AoS) : A Unified Approach

Proposed two ways to extend the FPCA approach to accommodate
covariate information: fFPCA and mFPCA

Both approaches consist of two parts: A systematic part
corresponding to the mean function and a stochastic part
comprising the random components.

The difference between these two approaches is in the handling of
the covariance structure.
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Covariate adjusted FPCA: Longitudinal Data

Suppose the data originate from a random function X(t, z)
with mean µ(t, z), where z is the value of a covariate Z.

There are two ways to handle the covariance function:

(i) Fully adjusted FPCA (fFPCA)

- the covariance function Σ(s, t, z) varies with the covariate z,

(ii) Mean adjusted FPCA (mFPCA)

- the covariance function Σ(s, t) does not vary with the covariate.
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Fully Adjusted FPCA (fFPCA)

This approach assumes that the covariance function Σ(s, t, z)
varies with z,
and the corresponding eigenfunctions φk(t, z) and eigenvalues
λk(z) vary with Z:

Σ(s, t, z) =
∑

k λk(z)φk(s, z)φk(t, z)

Karhunen-Loeve expansion implies random trajectory X(t, z) can
be represented as:

X(t, z) = µ(t, z) +
∑

k Ak(z)φk(t, z)

43/78



Fully Adjusted FPCA (fFPCA)

This approach assumes that the covariance function Σ(s, t, z)
varies with z,
and the corresponding eigenfunctions φk(t, z) and eigenvalues
λk(z) vary with Z:

Σ(s, t, z) =
∑

k λk(z)φk(s, z)φk(t, z)

Karhunen-Loeve expansion implies random trajectory X(t, z) can
be represented as:

X(t, z) = µ(t, z) +
∑

k Ak(z)φk(t, z)

43/78



Mean Adjusted FPCA (mFPCA)

The second approach takes the view:
first center each subject to Y (t)− µ(t, z), then pool all the
centered subjects together to get a pooled covariance function:

Σ(s, t) =
∑

k λ
∗
kφ
∗
k(s)φ

∗
k(t).

Karhunen-Loeve expansion thus implies that the random trajectory
X(t, z) can be represented as:

X(t, z) = µ(t, z) +
∑

k A
∗
k(z)φ

∗
k(t)
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Estimation: Mean Function

The mean function for fFPCA and mFPCA are the same and can be
estimated using any two-dimensional scatter-plot smoother of Yij on
(Tij , Zi).

Local linear estimator: µ̂L(t, z) = β̂0, where for β = (β0, β1, β2)

β̂ = argmin
β

n∑
i=1

Ni∑
j=1

K2(
t− Tij
hµ,t

,
z − Zi
hµ,z

)

×[Yij − β0 − β1(Tij − t)− β2(Zi − z)]2
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AIDS CD4: Mean Function
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Estimation: Covariance Function

The covariance can be estimated by a scatter-plot smoother of the raw
covariances defined as:

Cijk = (Yij − µ̂(Tij , Zi))(Yik − µ̂(Tik, Zi))

fFPCA: three-dimensional smoother of Cijk on (Tij , Tik, Zi)

mFPCA: two-dimensional smoother of Cijk on (Tij , Tik)
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Estimation: Covariance Function

Since:

cov(Yij , Yik|Tij , Tik, Zi)
= cov(X(Tij , Zi), X(Tik, Zi)) + σ2δjk

where δjk is 1 if j = k, and 0 otherwise, the diagonal of the raw
covariances Cijk should not be included in the covariance function
smoothing step.
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Example of Covariance Estimates

Linear local smoother for fFPCA:

ΣL(t, s, z) = β̂0,where:

β̂ = argmin
β
{
n∑
i=1

∑
1≤j 6=k≤Ni

K3(
t− Tij
hG,t

,
s− Tik
hG,t

,
z − Zi
hG,z

)

× [Cijk − (β0 + β1(Tij − t) + β2(Tik − s)− β3(Zi − z))]2}

Linear local smoother for mFPCA:

Σ∗(t, s) = β̂0,where:

β̂ = argmin
β
{
n∑
i=1

∑
1≤j 6=k≤Ni

K1(
t− Tij
hG∗

)K1(
s− Tik
hG∗

)

× [Cijk − (β0 + β1(Tij − t) + β2(Tik − s)]2}
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Estimation: Variance of Measurement Errors

The variance of Y (t) for a given z is:

V (t, z) = Σ(t, t, z) + σ2

V̂ (t, z) = β̂0,where:

β̂ = argmin
β

n∑
i=1

Ni∑
j=1

K2(
t− Tij
hV,t

,
z − Zi
hV,z

)

× [Cijj − β0 + β1(Tij − t) + β2(Zi − z))]2
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Estimation: Variance of Measurement Errors

For stability,

σ̂2 =
2

T

∫
Z

∫
T1

{V̂ (t, z)− Σ̂L(t, t, z)}dtdz,

where:

T1 = [inf{t : t ∈ T}+ |T |/4, sup{t : t ∈ T} − |T |/4]

• So far, we have assumed homoscedastic errors but it is possible to
allow the errors to vary with the time of measurement.
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AIDS: Estimated Covariance + measurement error
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Estimation: Eigenvalues and Eigenfunctions

fFPCA: The solutions of the eigen-equations,∫
Σ̂L(t, s, z)φ̂k(s, z)ds = λ̂k(z)φ̂k(t, z),

where the φ̂k(t, z) satisfies
∫
φ̂2k(t, z)dt = 1 and∫

φ̂k(t, z)φ̂m(t, z)dt = 0 for m < k.

mFPCA: The solutions of the eigen-equations,∫
Σ̂∗L(t, s)φ̂∗k(s)ds = λ̂∗kφ̂k(t),

where the φ̂∗k(t) satisfies
∫

(φ̂∗k(t))
2dt = 1 and∫

φ̂∗k(t)φ̂
∗
m(t)dt = 0 for m < k.
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Estimation: Principal Component Scores

fFPCA:

Use the conditional expectation (PACE) E(Aik(Zi)|Ỹi) to estimate
the principal component scores, where Ỹi = (Yi1, . . . , YiNi

)T

Under the assumption that Ỹi is multivariate normal:

Âik(Zi) = λ̂ φ̂Tik Σ−1
Ỹi

(Ỹi − µ̂i)

where

µ̂i =(µ̂(Ti1, Zi), . . . , µ̂(TiNi , Zi))
T

(Σ̂Ỹi
)j,k =Σ̂L(Tij , Tik, Zi) + σ̂2δjk

φ̂ik =(φ̂k(Tij , Zi), . . . , φ̂k(TiNi , Zi))
T
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Estimation: Principal Component Scores

The prediction of principal component scores in mFPCA is similar.
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Rate of Convergence

If E(N) <∞ the rate of convergence for the 2D mean and
covariance function is n1/3.

This is the optimal rate of convergence for 2D smoothers with
independent data.

If E(N)→∞, the rate of convergence can be as close to n2/5 as
possible but not be equal to n2/5.
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Optimal Rates of Convergence

The first k eigenfunctions can be estimates at the same optimal
rate as a 1- or 2-dim nonparametric regression function.

The largest k eigenvalues can be estimated at the
√
n rate.
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Bandwidth Selection

Mean function µ(t, z) and covariance Γ∗(s, t):
Leave one subject out cross-validation

Covariance Function Γ(s, t, z) : k-fold cross-validation Suppose
that the subjects are randomly assigned to k sets(S1, S2,. . . ,Sk).

h = argmin
h

k∑
l=1

∑
i∈Sl

∑
1≤j 6=m≤Ni

{Cijm − Γ̂−Sl(Tij , Tim, zi)}2

where Γ̂−Sl(Tij , Tim, zi) is the estimated covariance function at
(Tij , Tim, zi) when the subjects in Sl are not used to estimate
Γ(t, s, z).
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Number of Eigenfunctions

Three methods:

AIC

BIC

FVE: minimum number of eigen-components needed to explained
at least a specified total fraction of the variation.
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Extension to a Functional or Longitudinal Covariate

The regression function can be extended to functional/longitudinal
covariates by replacing Z with Z(t).

E(Y (t)|Z) = E(Y (t)|Z(t)) = µ(t, Z(t))

The aforementioned method to estimate µ(t, Z) still works by
replacing the scatter plot {(tijZi) : ∀ i, j} with
{(tij , Zi(tij) : ∀ i, j}
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End of Covariate Adjusted FPCA
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Multidimensional Covariates

Although both fFPCA and mFPCA can accommodate several
covariates (including longitudinal covariates) through multivariate
smoothing, the computation escalates fast so dimension reduction
models are called for to overcome this nonparametric curse of
dimensionality.

Assume that Z ∈ Rp, and for simplicity only the mean function
depends on Z (i.e. mFPCA).

=⇒ µ(t, z) = µ(t, βT z)→ single index

or

µ(t, z) = µ(t, βT1 z, β
T
2 z, . . . , β

T
k z), k < p

↓
multiple indices
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Dimension Reduction Models

There are many ways to estimate the indices for independent data,
i.e. when there is no t, including SIR (Li, 1991) and MAVE (Xia
and Li, 2002).

Y = µ(βT1 z, β
T
2 z, . . . , β

T
k z) + ε.

A few have been extended to functional or longitudinal data, but
none for the model:

Y (t) = µ(t, βT1 z, β
T
2 z, . . . , β

T
k z) + ε(t).

Jiang and W. (2010) extended the “MAVE” approach by Xia et al
(2002) to functional/longitudinal data and established√
n-consistency of the estimates for βj .
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AIDS CD4: Estimated Mean
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AIDS: Estimated Covariance + measurement error
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End of Multidimensional Covariates
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What’s Next After FPCA?

FPCA can be the end product, or it can be further used

- to explore the covariate effects,
- to recover the trajectories of each subject,
- to explore the modes of variation
- etc.

FPCA can help to find a more parsimonious model.

- We have illustrated this already when no covariates are involved.

- Next we explore model building when covariates are present.
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AIDS CD4: Estimated Mean with Covariates

adjusted
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AIDS CD4 Data

This suggests the possibility of a more parsimonious model with
additive or multiplicative covariate effects.

Y (t) = µ(t) + ψ(βT z) + e(t)→ µ(t) could be parametric,
eg. a polynomial.

Common marginal models for longitudinal data take the additive
form, and employ parametric models for both the mean and
covariance function.

Both parametric forms are difficult to detect for sparse and noisy
longitudinal data.
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AIDS CD4: Estimated Covariance
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AIDS CD4: Estimated Eigenfunctions

FVE AIC (BIC)

MSE K MSE K

0.1154 1 0.0937 3
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Adding Random Effects

Help to identify the form
of the random effects.

Y (t) = µ(t)ψ(βT z)
a+ bt+ e(t)
↓ ↓
random effects
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Semiparametric Product Model

If the first eigenfunction is proportional to the population mean
functionµ(t, Z) and explains almost all the variations of the data,

we can discards the remaining eigenfunctions and arrive at the
following multiplicative random effect model:

Y (t) =µ(t, z) +Aµ(t, z) + e(t)

bµ(t, z) + e(t)

↓

Random effects

Examples of such multiplicative random effects models are
bountiful and includes the PET data in Jiang, Aston and W. (2009
and the PBC data (bilirubin) in Ding and W. (2008).
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End of Part II
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